期刊文献+

THE HADAMARD INEQUALITY FOR CONVEX FUNCTION VIA FRACTIONAL INTEGRALS 被引量:4

THE HADAMARD INEQUALITY FOR CONVEX FUNCTION VIA FRACTIONAL INTEGRALS
在线阅读 下载PDF
导出
摘要 In this paper, we establish several inequalities for some differantiable mappings that are connected with the Riemann-Liouville fractional integrals. The analysis used in the proofs is fairly elementary. In this paper, we establish several inequalities for some differantiable mappings that are connected with the Riemann-Liouville fractional integrals. The analysis used in the proofs is fairly elementary.
出处 《Acta Mathematica Scientia》 SCIE CSCD 2013年第5期1293-1299,共7页 数学物理学报(B辑英文版)
关键词 Hadamard's inequality convex functions power-mean inequality Riemann-Liouville fractional integration Hadamard's inequality convex functions power-mean inequality Riemann-Liouville fractional integration
作者简介 E-mail: emos@atauni. edu. trE-mail:yildizc@atauni. edu. trCorresponding author: C. YILDIZ.E-mail:Sever. Dragomir@vu. edu. au
  • 相关文献

参考文献13

  • 1Alomari M, Darus M. On the Hadaraard's inequality for log-convex functions on the coordinateds. J Ineq Appl, 2009, 2009: Article ID 283147, 13 pages.
  • 2Belarbi S, Dahmani Z. On some new fractional integral inequalities. J Ineq Pure Appl Math, 2009, 10(3): Art. 86.
  • 3Dahmani Z. New inequalities in fractional integrals. Int J Nonlinear Science, 2010, 9(4): 493-497.
  • 4Dahmani Z. On Minkowski and Hermite-Hadamard integral inequalities via fractional integration. Ann Fhnct Anal, 2010, 1(1): 51-58.
  • 5Dahmani Z, Tabharit L, Taf S. Some fractional integral inequalities. Nonl Sci Lett A, 2010, 1(2): 155-160.
  • 6Dahmani Z, Tabharit L, Tar S. New generalizations of Gruss inequality using Riemann-Liouville fractional integrals. Bull Math Anal Appl, 2010, 2(3): 93-99.
  • 7Dragomir S S, Pearce C E M. Selected Topics on Hermite-I-Iadamard Inequalities and Applications. RGMIA Monographs Victoria University, 2000.
  • 8Dragomir S S Agarwal R P. Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula. Appl Math Lett, 1998,11(5): 91 -95.
  • 9Klrmacl U S, Bakula M K, ()zdemir M E, Peari5 J. Hadamard-type inequalities for s-convex functions. Appl Math Comp, 2007, 193:26-35.
  • 10Ozdemir M E, KlrmaciU S. Two new theorem on mappings uniformly continuous and convex with appli- cations to quadrature rules and means. Appl Math Comp, 2003, 143:269-274.

同被引文献10

引证文献4

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部