In this paper, the general calculation formulas of radial matrix elements for relativistic n-dimensional hydrogen atom of spin S=0 are obtained, and the recurrence relation of different power order radial matrix eleme...In this paper, the general calculation formulas of radial matrix elements for relativistic n-dimensional hydrogen atom of spin S=0 are obtained, and the recurrence relation of different power order radial matrix elements are also derived.展开更多
On a compact Riemann surface with finite punctures P_(1),…P_(k),we define toric curves as multivalued,totallyunramified holomorphic maps to P^(n)with monodromy in a maximal torus of PSU(n+1).Toric solutions to SU(n+1...On a compact Riemann surface with finite punctures P_(1),…P_(k),we define toric curves as multivalued,totallyunramified holomorphic maps to P^(n)with monodromy in a maximal torus of PSU(n+1).Toric solutions to SU(n+1)Todasystems on X\{P_(1);…;P_(k)}are recognized by the associated toric curves in.We introduce character n-ensembles as-tuples of meromorphic one-forms with simple poles and purely imaginary periods,generating toric curves on minus finitelymany points.On X,we establish a correspondence between character-ensembles and toric solutions to the SU(n+1)system with finitely many cone singularities.Our approach not only broadens seminal solutions with two conesingularities on the Riemann sphere,as classified by Jost-Wang(Int.Math.Res.Not.,2002,(6):277-290)andLin-Wei-Ye(Invent.Math.,2012,190(1):169-207),but also advances beyond the limits of Lin-Yang-Zhong’s existencetheorems(J.Differential Geom.,2020,114(2):337-391)by introducing a new solution class.展开更多
Hanyu Xu 1,Xuedan Song 1,*,Qing Zhang 1,Chang Yu 1,Jieshan Qiu 1,2,*1 Liaoning Key Lab for Energy Materials and Chemical Engineering,State Key Laboratory of Fine Chemicals,School of Chemical Engineering,Dalian Univers...Hanyu Xu 1,Xuedan Song 1,*,Qing Zhang 1,Chang Yu 1,Jieshan Qiu 1,2,*1 Liaoning Key Lab for Energy Materials and Chemical Engineering,State Key Laboratory of Fine Chemicals,School of Chemical Engineering,Dalian University of Technology,Dalian 116024,Liaoning Province,China.展开更多
Potassium-calcium activates channel subfamily N member 3(KCNN3/SK3/KCa2.3)is involved in regulating cellular calcium signaling,muscle contraction and neurotransmitter release.Dysregulation of the KCNN3 channel is asso...Potassium-calcium activates channel subfamily N member 3(KCNN3/SK3/KCa2.3)is involved in regulating cellular calcium signaling,muscle contraction and neurotransmitter release.Dysregulation of the KCNN3 channel is associated with the development of various tumors.We use bioinformatics analysis to identify whether KCNN3 regulates the occurrence and development of stomach adenocarcinoma(STAD)as a prognostic target.By analyzing the Human Protein Atlas(HPA)database and The Cancer Genome Atlas(TCGA)database,we found that the protein and mRNA levels of KCNN3 were dramatically reduced in STAD,and TCGA database showed that KCNN3 significantly correlated with the prognosis and clinical features of STAD.In addition,we found that high expression of KCNN3 in STAD reduced the IC 50 of several drugs in STAD cells,suggesting that high expression of KCNN3 correlated with the drug sensitivity of STAD.To investigate the underlying biological mechanism,we identified a potential KCNN3 interaction factor,tumor necrosis factor receptor superfamily member 7(CD27/TNFRSF7),which is expressed at low levels in STAD.RT-qPCR and Western blotting confirmed that KCNN3 and CD27 positively correlated with each other at protein and mRNA levels,and co-immunoprecipitation and immunofluorescence experiments confirmed that the two proteins interact and colocalize in the cytoplasm.Moreover,we confirmed the inhibitory effect of KCNN3 on the proliferation,migration and invasion of human STAD cells in vitro and in vivo through subcutaneous tumorigenesis and cellular experiments.Furthermore,GO/KEGG enrichment analysis showed that KCNN3 was enriched in signaling pathways regulating the immune response and calcium or metal ion transport.Lastly,we verified through cell co-culture,RT-qPCR and CCK8 assays that high expression of KCNN3 can promote the increase of T cell activating factor and the killing effect of T cells on STAD cells.Therefore,our results suggest that KCNN3 is a potential inhibitory factor affecting the occurrence and progression of STAD.展开更多
Addressing the issues of significant entry settlement and severe mining pressure manifestations in the conventional 121 approach,an innovative N00 approach is proposed.By comparing the mining process and entry formati...Addressing the issues of significant entry settlement and severe mining pressure manifestations in the conventional 121 approach,an innovative N00 approach is proposed.By comparing the mining process and entry formation process of different approaches,the characteristics of entry roof settlement evolution under different approaches are obtained.The N00 approach,which incorporates roof cutting and NPR cable support,optimizes the mining and entry formation process to reduce the settlement phase of entry roof,decreases the settlement of entry roof,and enhances the steadiness of entry roof.The N00 approach modifies the entry roof structure through roof cutting and establishes a hydraulic support load mechanics model for the mining panel to derive the theoretical load pressure formula for the N00 approach’s hydraulic support.Compared with the conventional 121 approach,the pressure on the N00 approach’s hydraulic support is reduced.Empirical data obtained through field monitoring demonstrate that the N00 approach has reduced the roof settlement of the entry and weakened the mining pressure manifestation at the mining panel,achieving the goal of protecting the entry and mining panel.展开更多
The weak adsorption energy of oxygen-containing intermediates on Co center leads to a considerable performance dis-parity between Co-N-C and costly Pt benchmark in catalyzing oxygen reduction reaction(ORR).In this wor...The weak adsorption energy of oxygen-containing intermediates on Co center leads to a considerable performance dis-parity between Co-N-C and costly Pt benchmark in catalyzing oxygen reduction reaction(ORR).In this work,we strategi-cally engineer the active site structure of Co-N-C via B substitution,which is accomplished by the pyrolysis of ammonium borate.During this process,the in-situ generated NH_(3)gas plays a critical role in creating surface defects and boron atoms substituting nitrogen atoms in the carbon structure.The well-designed CoB_(1)N_(3)active site endows Co with higher charge density and stronger adsorption energy toward oxygen species,potentially accelerating ORR kinetics.As expected,the resulting Co-B/N-C catalyst exhibited superior ORR performance over Co-N-C counterpart,with 40 mV,and fivefold en-hancement in half-wave potential and turnover frequency(TOF).More importantly,the excellent ORR performance could be translated into membrane electrode assembly(MEA)in a fuel cell test,delivering an impressive peak power density of 824 mW·cm^(-2),which is currently the best among Co-based catalysts under the same conditions.This work not only demon-strates an effective method for designing advanced catalysts,but also affords a highly promising non-precious metal ORR electrocatalyst for fuel cell applications.展开更多
Currently,research on N^(6)-methyladenine(m^(6)A)is extensive in the field of oncology,while studies involving m^(6)A and skin diseases remain relatively limited.Based on existing reports,we searched PubMed and Web of...Currently,research on N^(6)-methyladenine(m^(6)A)is extensive in the field of oncology,while studies involving m^(6)A and skin diseases remain relatively limited.Based on existing reports,we searched PubMed and Web of Science for literature related to m^(6)A and dermatological conditions.Analysis of citation counts and journal impact factors revealed a significant upward trend in the volume of m^(6)A-related research.Term frequency analysis of titles and abstracts indicated that studies mainly focus on skin tumors and inflammatory or immune-related skin diseases,particularly melanoma,psoriasis,and skin development.Transcriptomic data from the Gene Expression Omnibus(GEO)were analyzed,revealing differential expression of m^(6)A-related genes in 4 types of skin tumors(including squamous cell carcinoma and basal cell carcinoma)as well as in inflammatory skin diseases such as psoriasis and atopic dermatitis,and potential mechanisms of action were also explored.Findings suggest that m^(6)A modifications exhibit heterogeneity between neoplastic and nonneoplastic skin diseases.However,the regulatory mechanisms of m^(6)A dynamic modifications on key genes involved in dermatological disorders remain unclear and warrant further investigation.展开更多
文摘In this paper, the general calculation formulas of radial matrix elements for relativistic n-dimensional hydrogen atom of spin S=0 are obtained, and the recurrence relation of different power order radial matrix elements are also derived.
基金supported by the National Natural Science Foundation of China(11931009,12271495,11971450,and 12071449)Anhui Initiative in Quantum Information Technologies(AHY150200)the Project of Stable Support for Youth Team in Basic Research Field,Chinese Academy of Sciences(YSBR-001).
文摘On a compact Riemann surface with finite punctures P_(1),…P_(k),we define toric curves as multivalued,totallyunramified holomorphic maps to P^(n)with monodromy in a maximal torus of PSU(n+1).Toric solutions to SU(n+1)Todasystems on X\{P_(1);…;P_(k)}are recognized by the associated toric curves in.We introduce character n-ensembles as-tuples of meromorphic one-forms with simple poles and purely imaginary periods,generating toric curves on minus finitelymany points.On X,we establish a correspondence between character-ensembles and toric solutions to the SU(n+1)system with finitely many cone singularities.Our approach not only broadens seminal solutions with two conesingularities on the Riemann sphere,as classified by Jost-Wang(Int.Math.Res.Not.,2002,(6):277-290)andLin-Wei-Ye(Invent.Math.,2012,190(1):169-207),but also advances beyond the limits of Lin-Yang-Zhong’s existencetheorems(J.Differential Geom.,2020,114(2):337-391)by introducing a new solution class.
文摘Hanyu Xu 1,Xuedan Song 1,*,Qing Zhang 1,Chang Yu 1,Jieshan Qiu 1,2,*1 Liaoning Key Lab for Energy Materials and Chemical Engineering,State Key Laboratory of Fine Chemicals,School of Chemical Engineering,Dalian University of Technology,Dalian 116024,Liaoning Province,China.
文摘Potassium-calcium activates channel subfamily N member 3(KCNN3/SK3/KCa2.3)is involved in regulating cellular calcium signaling,muscle contraction and neurotransmitter release.Dysregulation of the KCNN3 channel is associated with the development of various tumors.We use bioinformatics analysis to identify whether KCNN3 regulates the occurrence and development of stomach adenocarcinoma(STAD)as a prognostic target.By analyzing the Human Protein Atlas(HPA)database and The Cancer Genome Atlas(TCGA)database,we found that the protein and mRNA levels of KCNN3 were dramatically reduced in STAD,and TCGA database showed that KCNN3 significantly correlated with the prognosis and clinical features of STAD.In addition,we found that high expression of KCNN3 in STAD reduced the IC 50 of several drugs in STAD cells,suggesting that high expression of KCNN3 correlated with the drug sensitivity of STAD.To investigate the underlying biological mechanism,we identified a potential KCNN3 interaction factor,tumor necrosis factor receptor superfamily member 7(CD27/TNFRSF7),which is expressed at low levels in STAD.RT-qPCR and Western blotting confirmed that KCNN3 and CD27 positively correlated with each other at protein and mRNA levels,and co-immunoprecipitation and immunofluorescence experiments confirmed that the two proteins interact and colocalize in the cytoplasm.Moreover,we confirmed the inhibitory effect of KCNN3 on the proliferation,migration and invasion of human STAD cells in vitro and in vivo through subcutaneous tumorigenesis and cellular experiments.Furthermore,GO/KEGG enrichment analysis showed that KCNN3 was enriched in signaling pathways regulating the immune response and calcium or metal ion transport.Lastly,we verified through cell co-culture,RT-qPCR and CCK8 assays that high expression of KCNN3 can promote the increase of T cell activating factor and the killing effect of T cells on STAD cells.Therefore,our results suggest that KCNN3 is a potential inhibitory factor affecting the occurrence and progression of STAD.
基金Project(2022XDHZ12)supported by the Lvliang Technology Project,ChinaProjects(8232056,2232080)supported by the Beijing Natural Science Foundation,ChinaProject([2020]3008)supported by the Science and Technology Projects in Guizhou Province,China。
文摘Addressing the issues of significant entry settlement and severe mining pressure manifestations in the conventional 121 approach,an innovative N00 approach is proposed.By comparing the mining process and entry formation process of different approaches,the characteristics of entry roof settlement evolution under different approaches are obtained.The N00 approach,which incorporates roof cutting and NPR cable support,optimizes the mining and entry formation process to reduce the settlement phase of entry roof,decreases the settlement of entry roof,and enhances the steadiness of entry roof.The N00 approach modifies the entry roof structure through roof cutting and establishes a hydraulic support load mechanics model for the mining panel to derive the theoretical load pressure formula for the N00 approach’s hydraulic support.Compared with the conventional 121 approach,the pressure on the N00 approach’s hydraulic support is reduced.Empirical data obtained through field monitoring demonstrate that the N00 approach has reduced the roof settlement of the entry and weakened the mining pressure manifestation at the mining panel,achieving the goal of protecting the entry and mining panel.
基金the National Key Research and Development Program of China(2022YFB4004100)National Natural Science Foundation of China(22272161,22179126)+1 种基金the Jilin Province Science and Technology Development Program(YDZJ202202CXJD011,20240101019JC)Jilin Province major science and technology project(222648GX0105103875)for financial supports.
文摘The weak adsorption energy of oxygen-containing intermediates on Co center leads to a considerable performance dis-parity between Co-N-C and costly Pt benchmark in catalyzing oxygen reduction reaction(ORR).In this work,we strategi-cally engineer the active site structure of Co-N-C via B substitution,which is accomplished by the pyrolysis of ammonium borate.During this process,the in-situ generated NH_(3)gas plays a critical role in creating surface defects and boron atoms substituting nitrogen atoms in the carbon structure.The well-designed CoB_(1)N_(3)active site endows Co with higher charge density and stronger adsorption energy toward oxygen species,potentially accelerating ORR kinetics.As expected,the resulting Co-B/N-C catalyst exhibited superior ORR performance over Co-N-C counterpart,with 40 mV,and fivefold en-hancement in half-wave potential and turnover frequency(TOF).More importantly,the excellent ORR performance could be translated into membrane electrode assembly(MEA)in a fuel cell test,delivering an impressive peak power density of 824 mW·cm^(-2),which is currently the best among Co-based catalysts under the same conditions.This work not only demon-strates an effective method for designing advanced catalysts,but also affords a highly promising non-precious metal ORR electrocatalyst for fuel cell applications.
基金supported by the National Natural Science Foundation,China(82103704).
文摘Currently,research on N^(6)-methyladenine(m^(6)A)is extensive in the field of oncology,while studies involving m^(6)A and skin diseases remain relatively limited.Based on existing reports,we searched PubMed and Web of Science for literature related to m^(6)A and dermatological conditions.Analysis of citation counts and journal impact factors revealed a significant upward trend in the volume of m^(6)A-related research.Term frequency analysis of titles and abstracts indicated that studies mainly focus on skin tumors and inflammatory or immune-related skin diseases,particularly melanoma,psoriasis,and skin development.Transcriptomic data from the Gene Expression Omnibus(GEO)were analyzed,revealing differential expression of m^(6)A-related genes in 4 types of skin tumors(including squamous cell carcinoma and basal cell carcinoma)as well as in inflammatory skin diseases such as psoriasis and atopic dermatitis,and potential mechanisms of action were also explored.Findings suggest that m^(6)A modifications exhibit heterogeneity between neoplastic and nonneoplastic skin diseases.However,the regulatory mechanisms of m^(6)A dynamic modifications on key genes involved in dermatological disorders remain unclear and warrant further investigation.