Objective Diabetic patients pose a greater challenge in managing chronic wound healing,leading to a higher amputation risk compared to non-diabetic patients.Due to their paracrine function by secreting various cytokin...Objective Diabetic patients pose a greater challenge in managing chronic wound healing,leading to a higher amputation risk compared to non-diabetic patients.Due to their paracrine function by secreting various cytokines and angiogenic factors,mesenchymal stem cells(MSCs)have been acknowledged to be a potential agent in modulating wound healing process.However,post-transplanted MSCs are vulnerable to death,indicating poor survival and migration ability in the wound site of the host,especially under hyperglycemia.As hyperglycemia induces reactive oxygen species(ROS)generation and cellular apoptosis,improvement of MSCs survival and migration potentials under hyperglycemia could contribute to a more efficient MSCs-based wound healing therapy.Salidroside(Sa),a small-molecule drug derived from Rhodiola plant,has been proved to enhance the paracrine function of skeletal muscle cells,as well as their migration even under hypoxichyperglycemia.Herein,we investigated whether Sa could improve the survival and migration potentials of MSCs,subsequently enhance the wound healing process under hyperglycemia.Methods MSCs were cultured under three conditions:low glucose,high glucose,and high glucose+Sa.qPCR analysis and western blotting were done to examine the mRNA and protein expression level of several factors which are important in upregulating the wound healing process.MTT colorimetric assay,intracellular ROS detection,and flow cytometry assay were employed to examine the effect of Sa in MSCs survival.Transwell chamber assay,scratch assay,and phalloidin staining were done to elucidate the role of Sa in regulating MSCs migration potential.For in vivo experiment,diabetic wound healing mice model was generated to elucidate the effect of Sa-pretreated MSCs transplantation in wound closure rate,as well as re-epithelization status,observed with hematoxylin and eosin staining.The diabetic wound healing mice model were divided into three groups:1)mice injected with PBS,2)mice transplanted with PBS-pretreated MSCs,and 3)mice transplanted with Sa-pretreated MSCs.Results(1)Hyperglycemic condition induced the generation of ROS and suppressed total cell number of MSCs,while Sa treatment into MSCs restored these hyperglycemia-induced alterations.In line with this,total apoptotic cells were also suppressed by treating MSCs with Sa.The expression level of cell survival factor,heme-oxygenase 1(HO-1),was enhanced in Sa-pretreated MSCs.Further treatment of HO-1 inhibitor into Sa-pretreated MSCs nullified the ROS level and total apoptotic cells,indica-ting the importance of HO-1 in mediating the Sa-induced survival of MSCs under hyperglycemia.(2)Transwell chamber and scratch assay results showed that Sa-pretreated MSCs have a higher migration potential under hyperglycemia,supported by higher F-actin polymerization fractal dimension.Fibroblast growth factor 2(FGF2)and hepatocyte growth factor(HGF)expression level,which are essential factors for cell migration,were also improved in Sa-pretreated MSCs under hyperglycemia.(3)In diabetic wound healing mice model,transplantation of Sa-pretreated MSCs resulted in significantly improved wound closure rate and re-epithelization.The protein levels of HO-1,FGF2,and HGF were also enhanced in the tissues obtained from the wound site of diabetic wound healing mice model which were transplanted with Sa-pretreated MSCs.Conclusions Salidroside pretreatment on MSCs could improve their survival and migration potentials,subsequently promoting wound healing process under hyperglycemia.This prospective MSC-based therapy could serve as a novel strategy to improve diabetic wound healing.展开更多
Objective:To investigate the effect of SHU555A,a clinically approved iron nanoparticle,labeling on differentiation of bone marrow mesenchymal stem cells(BMSCs) into neurocyte-like cells in vitro.Methods:10 times dilut...Objective:To investigate the effect of SHU555A,a clinically approved iron nanoparticle,labeling on differentiation of bone marrow mesenchymal stem cells(BMSCs) into neurocyte-like cells in vitro.Methods:10 times dilution of 10μl,20μl,40μl and 80μl SHU555A were added to 2ml of culture medium containing rat BMSCs to obtain four experimental groups of SHU555A labeling of BMSCs with ferri ion concentrations of 14μg/ml,28μg/ml,56μg/ml and 112μg/ml,respectively.2ml of culture medium with rat BMSCs did not contain SHU555A served as control group.The BMSCs of all the groups were pre-induced by bFGF,and induced by DMSO/butylated hydroxyanisole(BHA) for six hours,subsequently reverse transcription polymerase chain reaction(RT-PCR) technique was employed to detect mRNA expression of nestin,neuronspecific analase(NSE) and glial fibrillary acid protein(GFAP).Western blot technique was used to detectprotein expression of nestin.Results:Quantitative-PCR revealed high mRNA expression of nestin,NSE and GFAP induced by DMSO/BHA in all the experimental groups,but the difference between the experimental groups and the control group was not significant(P>0.05).Western blot analysis demonstrated there was no statistically significant difference in nestin protein expression between the experimental groups and the control group(P>0.05).Conclusion:SHU555A labeling do not affect differentiation of rat BMSCs into neurocyte-like cells in vitro.展开更多
Aim The present study aims to investigate whether BMSCs transplantation may inhibit hypertrophic hearts and its underlying mechanisms. Background There is no evidence so far that Bone marrow-derived mesenchy- mal stem...Aim The present study aims to investigate whether BMSCs transplantation may inhibit hypertrophic hearts and its underlying mechanisms. Background There is no evidence so far that Bone marrow-derived mesenchy- mal stem cells (BMSCs) can heal pathological myocardial hypertrophy. Methods To observe the antihypertrophic actions, BMSCs was indirectly cocultured with NRVCs in vitro, or intramyocardially transplanted into hypertrophic hearts in vivo. Results ISO-induced typical hypertrophic characteristics of cardiomyocytes were obviously preven- ted by BMSCs in the co-culture model in vitro and after BMSCs transplantation in vivo. Furthermore, the activation of the Ca2+/calcineurin/NFATc3 hypertrophic pathway was shown abrogated in the presence of BMSCs both in vitro and in vivo. Interestingly, blockage of VEGF release from BMSCs but not bFGF and IGF-1 can abolish the protec- tive effects of BMSCs on cardiomyocytes hypertrophy. Consistently, VEGF administration attenuated ISO-induced BNP and β-MHC expression and the activation of Ca2+/cal- the enlargement of cellular size, the augment of ANP, cineurin/NFATc3 hypertrophic pathway, and these can be abrogated by blocking VEGFR-1, indicating VEGFR-1 is involved in the antihypertrophic role of VEGF. We further find that the ample VEGF secretion contributing to the anti-hypertrophic effects of BMSCs originates from BMSCs interplay with cardiac cells but not BMSCs or cardiomyo- cytes alone. Conclusions Thus, mesenchymal stem cells are able to inhibit myocardial hypertrophy via interacting with cardiomyocytes so as to promote VEGF release which inhibits the activation of the Ca2+/calcineurin/NFATc3 hypertrophic signaling pathway in cardiac cells, in addition to its well-recognized ability to ameliorate myocardial injuries by replacing dead cells.展开更多
Aim Aging is an independent risk factor for heart disease, however the effective intervention has not been found so far. Bone marrow mesenchymal stem cells (BMSCs) have been shown to offer a wide variety of cel- l...Aim Aging is an independent risk factor for heart disease, however the effective intervention has not been found so far. Bone marrow mesenchymal stem cells (BMSCs) have been shown to offer a wide variety of cel- lular functions including the protective effects on damaged hearts. Here we investigated the antiaging properties of BMSCs and the underlying mechanism in a cellular model of cardiomyocyte senescence and a rat model of aging hearts. Methods In vitro study, neonatal rat ventricular cells (NRVCs) and BMSCs were cocultured in the same dish with a semipermeable membrane to separate the two populations. In vivo, the BMSCs were injected into the rat hearts to observe their antiaging effects. The expression of β-galactosidase and aging-related proteins, and the lev- els of oxidative stress were determined in vivo and in vitro. The heart function was measured by the High-Resolution Imaging System. Results Monocultured NRVCs displayed the senescence-associated phenotypes, characterized by an increase in the number of β-galaetosidase-positive cells and decreases in the degradation and disappearance of cellular organelles in a time-dependent manner. The levels of reactive oxygen species and malondialdehyde were el- evated, whereas the activities of antioxidant enzymes superoxide dismutase and glutathione peroxidase were de- creased, along with upregulation of p53, p21cipl/wafl and p16INK4a in the aging eardiomyoeytes. These deleterious alterations were abrogated in aging NRVCs cocultured with BMSCs. Qualitatively, the same senescent phenotypes were consistently observed in aging rat hearts. Notably, BMSC transplantation significantly prevented these detri- mental alterations and improved the impaired cardiac function in the aging rats. Conclusions BMSCs possess strong antiseneseence action on the aging NRVCs and hearts and can improve cardiac function after transplantation in aging rats. The present study, therefore, provides an alternative approach for the treatment of heart failure in the elderly population.展开更多
Non-alcoholic fatty liver disease(NAFLD)is the most common chronic liver disease,defined by several phases,ranging from benign fat accumulation to non-alcoholic steatohepatitis(NASH),which can lead to liver cancer and...Non-alcoholic fatty liver disease(NAFLD)is the most common chronic liver disease,defined by several phases,ranging from benign fat accumulation to non-alcoholic steatohepatitis(NASH),which can lead to liver cancer and cirrhosis.Although NAFLD is a disease of disordered metabolism,it also involves several immune cell-mediated inflammatory processes,either promoting and/or suppressing hepatocyte inflammation through the secretion of pro-inflammatory and/or anti-inflammatory factors to influence the NAFLD process.However,the underlying disease mechanism and the role of immune cells in NAFLD are still under investigation,leaving many open-ended questions.In this review,we presented the recent concepts about the interplay of immune cells in the onset and pathogenesis of NAFLD.We also highlighted the specific non-immune cells exhibiting immunological properties of therapeutic significance in NAFLD.We hope that this review will help guide the development of future NAFLD therapeutics.展开更多
基金Supported by grants from the National Natural Science Foundation of China ( 81372202,81872273, 31871367)
文摘Objective Diabetic patients pose a greater challenge in managing chronic wound healing,leading to a higher amputation risk compared to non-diabetic patients.Due to their paracrine function by secreting various cytokines and angiogenic factors,mesenchymal stem cells(MSCs)have been acknowledged to be a potential agent in modulating wound healing process.However,post-transplanted MSCs are vulnerable to death,indicating poor survival and migration ability in the wound site of the host,especially under hyperglycemia.As hyperglycemia induces reactive oxygen species(ROS)generation and cellular apoptosis,improvement of MSCs survival and migration potentials under hyperglycemia could contribute to a more efficient MSCs-based wound healing therapy.Salidroside(Sa),a small-molecule drug derived from Rhodiola plant,has been proved to enhance the paracrine function of skeletal muscle cells,as well as their migration even under hypoxichyperglycemia.Herein,we investigated whether Sa could improve the survival and migration potentials of MSCs,subsequently enhance the wound healing process under hyperglycemia.Methods MSCs were cultured under three conditions:low glucose,high glucose,and high glucose+Sa.qPCR analysis and western blotting were done to examine the mRNA and protein expression level of several factors which are important in upregulating the wound healing process.MTT colorimetric assay,intracellular ROS detection,and flow cytometry assay were employed to examine the effect of Sa in MSCs survival.Transwell chamber assay,scratch assay,and phalloidin staining were done to elucidate the role of Sa in regulating MSCs migration potential.For in vivo experiment,diabetic wound healing mice model was generated to elucidate the effect of Sa-pretreated MSCs transplantation in wound closure rate,as well as re-epithelization status,observed with hematoxylin and eosin staining.The diabetic wound healing mice model were divided into three groups:1)mice injected with PBS,2)mice transplanted with PBS-pretreated MSCs,and 3)mice transplanted with Sa-pretreated MSCs.Results(1)Hyperglycemic condition induced the generation of ROS and suppressed total cell number of MSCs,while Sa treatment into MSCs restored these hyperglycemia-induced alterations.In line with this,total apoptotic cells were also suppressed by treating MSCs with Sa.The expression level of cell survival factor,heme-oxygenase 1(HO-1),was enhanced in Sa-pretreated MSCs.Further treatment of HO-1 inhibitor into Sa-pretreated MSCs nullified the ROS level and total apoptotic cells,indica-ting the importance of HO-1 in mediating the Sa-induced survival of MSCs under hyperglycemia.(2)Transwell chamber and scratch assay results showed that Sa-pretreated MSCs have a higher migration potential under hyperglycemia,supported by higher F-actin polymerization fractal dimension.Fibroblast growth factor 2(FGF2)and hepatocyte growth factor(HGF)expression level,which are essential factors for cell migration,were also improved in Sa-pretreated MSCs under hyperglycemia.(3)In diabetic wound healing mice model,transplantation of Sa-pretreated MSCs resulted in significantly improved wound closure rate and re-epithelization.The protein levels of HO-1,FGF2,and HGF were also enhanced in the tissues obtained from the wound site of diabetic wound healing mice model which were transplanted with Sa-pretreated MSCs.Conclusions Salidroside pretreatment on MSCs could improve their survival and migration potentials,subsequently promoting wound healing process under hyperglycemia.This prospective MSC-based therapy could serve as a novel strategy to improve diabetic wound healing.
基金Henan ontstanding talent program(084200510012)zhou research programs(083SGYS33262-5)zhou university 2011 project,third constraction projection:basic and clinical research of stem cell
文摘Objective:To investigate the effect of SHU555A,a clinically approved iron nanoparticle,labeling on differentiation of bone marrow mesenchymal stem cells(BMSCs) into neurocyte-like cells in vitro.Methods:10 times dilution of 10μl,20μl,40μl and 80μl SHU555A were added to 2ml of culture medium containing rat BMSCs to obtain four experimental groups of SHU555A labeling of BMSCs with ferri ion concentrations of 14μg/ml,28μg/ml,56μg/ml and 112μg/ml,respectively.2ml of culture medium with rat BMSCs did not contain SHU555A served as control group.The BMSCs of all the groups were pre-induced by bFGF,and induced by DMSO/butylated hydroxyanisole(BHA) for six hours,subsequently reverse transcription polymerase chain reaction(RT-PCR) technique was employed to detect mRNA expression of nestin,neuronspecific analase(NSE) and glial fibrillary acid protein(GFAP).Western blot technique was used to detectprotein expression of nestin.Results:Quantitative-PCR revealed high mRNA expression of nestin,NSE and GFAP induced by DMSO/BHA in all the experimental groups,but the difference between the experimental groups and the control group was not significant(P>0.05).Western blot analysis demonstrated there was no statistically significant difference in nestin protein expression between the experimental groups and the control group(P>0.05).Conclusion:SHU555A labeling do not affect differentiation of rat BMSCs into neurocyte-like cells in vitro.
文摘Aim The present study aims to investigate whether BMSCs transplantation may inhibit hypertrophic hearts and its underlying mechanisms. Background There is no evidence so far that Bone marrow-derived mesenchy- mal stem cells (BMSCs) can heal pathological myocardial hypertrophy. Methods To observe the antihypertrophic actions, BMSCs was indirectly cocultured with NRVCs in vitro, or intramyocardially transplanted into hypertrophic hearts in vivo. Results ISO-induced typical hypertrophic characteristics of cardiomyocytes were obviously preven- ted by BMSCs in the co-culture model in vitro and after BMSCs transplantation in vivo. Furthermore, the activation of the Ca2+/calcineurin/NFATc3 hypertrophic pathway was shown abrogated in the presence of BMSCs both in vitro and in vivo. Interestingly, blockage of VEGF release from BMSCs but not bFGF and IGF-1 can abolish the protec- tive effects of BMSCs on cardiomyocytes hypertrophy. Consistently, VEGF administration attenuated ISO-induced BNP and β-MHC expression and the activation of Ca2+/cal- the enlargement of cellular size, the augment of ANP, cineurin/NFATc3 hypertrophic pathway, and these can be abrogated by blocking VEGFR-1, indicating VEGFR-1 is involved in the antihypertrophic role of VEGF. We further find that the ample VEGF secretion contributing to the anti-hypertrophic effects of BMSCs originates from BMSCs interplay with cardiac cells but not BMSCs or cardiomyo- cytes alone. Conclusions Thus, mesenchymal stem cells are able to inhibit myocardial hypertrophy via interacting with cardiomyocytes so as to promote VEGF release which inhibits the activation of the Ca2+/calcineurin/NFATc3 hypertrophic signaling pathway in cardiac cells, in addition to its well-recognized ability to ameliorate myocardial injuries by replacing dead cells.
文摘Aim Aging is an independent risk factor for heart disease, however the effective intervention has not been found so far. Bone marrow mesenchymal stem cells (BMSCs) have been shown to offer a wide variety of cel- lular functions including the protective effects on damaged hearts. Here we investigated the antiaging properties of BMSCs and the underlying mechanism in a cellular model of cardiomyocyte senescence and a rat model of aging hearts. Methods In vitro study, neonatal rat ventricular cells (NRVCs) and BMSCs were cocultured in the same dish with a semipermeable membrane to separate the two populations. In vivo, the BMSCs were injected into the rat hearts to observe their antiaging effects. The expression of β-galactosidase and aging-related proteins, and the lev- els of oxidative stress were determined in vivo and in vitro. The heart function was measured by the High-Resolution Imaging System. Results Monocultured NRVCs displayed the senescence-associated phenotypes, characterized by an increase in the number of β-galaetosidase-positive cells and decreases in the degradation and disappearance of cellular organelles in a time-dependent manner. The levels of reactive oxygen species and malondialdehyde were el- evated, whereas the activities of antioxidant enzymes superoxide dismutase and glutathione peroxidase were de- creased, along with upregulation of p53, p21cipl/wafl and p16INK4a in the aging eardiomyoeytes. These deleterious alterations were abrogated in aging NRVCs cocultured with BMSCs. Qualitatively, the same senescent phenotypes were consistently observed in aging rat hearts. Notably, BMSC transplantation significantly prevented these detri- mental alterations and improved the impaired cardiac function in the aging rats. Conclusions BMSCs possess strong antiseneseence action on the aging NRVCs and hearts and can improve cardiac function after transplantation in aging rats. The present study, therefore, provides an alternative approach for the treatment of heart failure in the elderly population.
文摘Non-alcoholic fatty liver disease(NAFLD)is the most common chronic liver disease,defined by several phases,ranging from benign fat accumulation to non-alcoholic steatohepatitis(NASH),which can lead to liver cancer and cirrhosis.Although NAFLD is a disease of disordered metabolism,it also involves several immune cell-mediated inflammatory processes,either promoting and/or suppressing hepatocyte inflammation through the secretion of pro-inflammatory and/or anti-inflammatory factors to influence the NAFLD process.However,the underlying disease mechanism and the role of immune cells in NAFLD are still under investigation,leaving many open-ended questions.In this review,we presented the recent concepts about the interplay of immune cells in the onset and pathogenesis of NAFLD.We also highlighted the specific non-immune cells exhibiting immunological properties of therapeutic significance in NAFLD.We hope that this review will help guide the development of future NAFLD therapeutics.