期刊文献+
共找到295篇文章
< 1 2 15 >
每页显示 20 50 100
Review of local mean decomposition and its application in fault diagnosis of rotating machinery 被引量:7
1
作者 LI Yongbo SI Shubin +1 位作者 LIU Zhiliang LIANG Xihui 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2019年第4期799-814,共16页
Rotating machinery is widely used in the industry.They are vulnerable to many kinds of damages especially for those working under tough and time-varying operation conditions.Early detection of these damages is importa... Rotating machinery is widely used in the industry.They are vulnerable to many kinds of damages especially for those working under tough and time-varying operation conditions.Early detection of these damages is important,otherwise,they may lead to large economic loss even a catastrophe.Many signal processing methods have been developed for fault diagnosis of the rotating machinery.Local mean decomposition(LMD)is an adaptive mode decomposition method that can decompose a complicated signal into a series of mono-components,namely product functions(PFs).In recent years,many researchers have adopted LMD in fault detection and diagnosis of rotating machines.We give a comprehensive review of LMD in fault detection and diagnosis of rotating machines.First,the LMD is described.The advantages,disadvantages and some improved LMD methods are presented.Then,a comprehensive review on applications of LMD in fault diagnosis of the rotating machinery is given.The review is divided into four parts:fault diagnosis of gears,fault diagnosis of rotors,fault diagnosis of bearings,and other LMD applications.In each of these four parts,a review is given to applications applying the LMD,improved LMD,and LMD-based combination methods,respectively.We give a summary of this review and some future potential topics at the end. 展开更多
关键词 local mean decomposition(lmd) SIGNAL processing GEAR ROTOR BEARING
在线阅读 下载PDF
基于改进RLMD的爆破振动信号去趋势方法
2
作者 刘志龙 张祚富 +3 位作者 盖俊鹏 张文辉 孙斌 徐振洋 《爆破器材》 北大核心 2025年第3期48-56,64,共10页
在爆破振动监测过程中,为解决低频趋势成分干扰所引起的基线漂移问题,提出了一种基于鲁棒局部均值分解(robust local mean decomposition, RLMD)和均值判比(mean ratio, MR)方法的爆破振动信号基线校正方法。首先,利用RLMD对包含趋势项... 在爆破振动监测过程中,为解决低频趋势成分干扰所引起的基线漂移问题,提出了一种基于鲁棒局部均值分解(robust local mean decomposition, RLMD)和均值判比(mean ratio, MR)方法的爆破振动信号基线校正方法。首先,利用RLMD对包含趋势项的振动信号进行自适应分解,生成一系列乘积函数(product functions, PF);随后,通过MR方法筛选出低频趋势项分量,去除这些成分并重构剩余信号,以校正基线漂移。仿真信号分析结果表明,与传统的最小二乘拟合法(ordinary least squares, OLS)和局部均值分解(local mean decomposition, LMD)相比,RLMD方法在提取趋势项方面具有更高的准确性和稳定性,有效避免了模态混叠现象。现场爆破振动监测试验结果显示,与远区振动信号相比,近区实测爆破振动信号受到低频趋势项的干扰更为严重。通过RLMD-MR方法进行基线校正后,信号波形能够有效恢复至基线中心附近,解决了基线漂移问题。 展开更多
关键词 爆破振动 信号处理 鲁棒局部分解 去趋势 均值判比法
在线阅读 下载PDF
基于RLMD-SE-CNN-RELM的水位预测混合模型研究
3
作者 张奇伟 刘月馨 +3 位作者 许雯 徐军杨 陈佳雷 张楚 《人民长江》 北大核心 2025年第3期116-125,133,共11页
精准的水位预测在自然灾害预警、水资源管理和生态环境保护等领域具有重要应用价值。为此,提出了一种基于鲁棒局部均值分解(RLMD)、样本熵(SampEn)、卷积神经网络(CNN)和正则化极限学习机(RELM)的水位预测混合模型。首先利用RLMD对历史... 精准的水位预测在自然灾害预警、水资源管理和生态环境保护等领域具有重要应用价值。为此,提出了一种基于鲁棒局部均值分解(RLMD)、样本熵(SampEn)、卷积神经网络(CNN)和正则化极限学习机(RELM)的水位预测混合模型。首先利用RLMD对历史水位数据进行分解,引入样本熵方法对分量数据进行特征重组以减少数据量;然后利用CNN对重组数据进行特征提取以提高训练速度;最后利用RELM预测每个子序列,将预测结果叠加得到水位序列的最终预测值。以岷江流域下游高场水文站点1997~2020年的日水位数据为研究对象,对模型预测性能进行验证。结果表明:在未来1 d水位预测方面,所构建的混合模型与RELM、CNN-RELM、RLMD-CNN-RELM模型相比,准确度分别提升5.93%,5.91%,0.52%;3种不同预见期(1,2,3 d)下,混合模型预测结果的NSE分别为0.934657,0.932588,0.922955,预报精度均达到甲级。建立的RLMD-SE-CNN-RELM模型预测精度高,稳定性强,可为水位预测和水资源的精准调度提供参考。 展开更多
关键词 水位预测 鲁棒局部均值分解 样本熵 卷积神经网络 正则化极限学习机 岷江流域
在线阅读 下载PDF
基于LMD-QPSO-LSTM的离散再制造系统动态瓶颈预测方法
4
作者 汪家炜 王艳 +1 位作者 纪志成 刘相 《现代制造工程》 北大核心 2025年第6期150-160,57,共12页
离散再制造业普遍存在影响生产效率的瓶颈问题,传统的静态瓶颈识别方法难以有效解决复杂再制造环境中的动态瓶颈漂移问题。针对这一现象,提出了一种基于局部均值分解(Local Mean Decomposition, LMD)方法结合长短期记忆(Long Short-Term... 离散再制造业普遍存在影响生产效率的瓶颈问题,传统的静态瓶颈识别方法难以有效解决复杂再制造环境中的动态瓶颈漂移问题。针对这一现象,提出了一种基于局部均值分解(Local Mean Decomposition, LMD)方法结合长短期记忆(Long Short-Term Memory, LSTM)网络并利用改进量子粒子群(Quantum Particle Swarm Optimization, QPSO)算法优化的LMD-QPSO-LSTM动态瓶颈预测模型。首先,采用机器能耗属性定义动态瓶颈指数,并基于LMD方法分解瓶颈序列以降低数据的波动性。其次,引入注意力机制(Attention Mechanism, AM)来增强LSTM网络的学习能力,同时采用改进的QPSO算法优化LSTM网络选取最优参数。最后,对瓶颈指数的分量进行预测,并将预测结果重构。仿真实验结果表明,基于LMD-QPSO-LSTM的动态瓶颈预测方法可以有效提高预测精度,且能够准确地跟踪瓶颈位置的变化。与其他模型相比,所提方法至少将平均绝对误差(Mean Absolute Error, MAE)降低了52.63%,平均百分比误差(Mean Absolute Percentage Error, MAPE)降低了25.14%,均方根误差(Root Mean Square Error, RMSE)降低了45.78%。 展开更多
关键词 局部均值分解 长短期记忆网络 改进量子粒子群算法 动态瓶颈预测 瓶颈漂移
在线阅读 下载PDF
基于MLMD的电能质量扰动检测方法
5
作者 黄永红 浦骁威 +1 位作者 张龙 李强 《电测与仪表》 北大核心 2024年第5期152-159,共8页
针对局部均值分解(Local Mean Decomposition,LMD)算法应用于电能质量扰动检测时存在“端点效应”与滑动平均收敛速度慢,严重影响测量精度的问题,提出一种改进局部均值分解方法(Modified LMD,MLMD)。通过分段三次Hermite插值取代滑动平... 针对局部均值分解(Local Mean Decomposition,LMD)算法应用于电能质量扰动检测时存在“端点效应”与滑动平均收敛速度慢,严重影响测量精度的问题,提出一种改进局部均值分解方法(Modified LMD,MLMD)。通过分段三次Hermite插值取代滑动平均法,有效改善LMD收敛慢、受平滑长度影响的弊端。为避免延拓长度不够而导致的“延拓失败”情形,在镜像延拓法的基础上结合“奇延拓”方法提出改进镜像延拓法。针对“直接法”求频率存在“毛刺现象”的弊端,文中改用希尔伯特变换(Hilbert Transform,HT)求取瞬时频率。最后,将MLMD分别应用于单一扰动信号与复合谐波信号的检测,相较传统的经验模态分解方法(Empirical Mode Decomposition,EMD),MLMD方法可有效抑制“端点效应”,同时能更准确的定位扰动信号的起止时刻,并且对高次谐波信号有更好的提取能力。 展开更多
关键词 lmd 端点效应 三次Hermite插值 改进镜像延拓
在线阅读 下载PDF
基于EOE_LMD和阶次跟踪分析的变转速轴承故障诊断 被引量:2
6
作者 张超 买买提热依木·阿布力孜 《振动与冲击》 EI CSCD 北大核心 2024年第7期308-316,共9页
振动信号分析是轴承故障诊断中的重要技术手段之一。变转速工况下的滚动轴承振动信号是典型的非平稳信号,并且在转频变化较小的工况中还存在噪声干扰的问题,使传统的时频分析技术难以应用。为解决该问题,提出了一种基于经验最优包络(emp... 振动信号分析是轴承故障诊断中的重要技术手段之一。变转速工况下的滚动轴承振动信号是典型的非平稳信号,并且在转频变化较小的工况中还存在噪声干扰的问题,使传统的时频分析技术难以应用。为解决该问题,提出了一种基于经验最优包络(empirical optimal envelope,EOE)的局部均值分解(local mean decomposition,LMD)和采用分段线性插值的计算阶次跟踪(computing order tracking,COT)算法相结合的故障诊断方法。首先,确定低通滤波器的截止频率和滤波阶数,对滚动轴承振动信号进行滤波,并对滤波后的包络信号进行COT,以获得角域平稳信号。然后,利用EOE_LMD对重采样后的平稳信号进行处理,得到若干乘积函数(product function,PF)分量。最后,通过计算各分量的信息熵和相关系数,选取合适的分量进行阶次分析,以判断变转速滚动轴承的故障类型。结果表明,该方法可以消除转速波动对故障特征提取的影响,在不同转速变化条件下对滚动轴承具有良好的故障诊断能力。 展开更多
关键词 滚动轴承 经验最优包络(EOE) 局部均值分解(lmd) 计算阶次跟踪(COT) 变转速工况
在线阅读 下载PDF
基于LMD改进特征提取的三路病理语音识别 被引量:3
7
作者 张楠 陈媛媛 +1 位作者 陈鑫钰 侯懿桃 《电子测量技术》 北大核心 2024年第12期140-147,共8页
针对发音障碍患者发音不够清晰准确,导致病理语音识别率低的问题,提出一种基于LMD改进的Gammatone滤波器组图谱特征提取算法进行三路病理语音识别,首先,该算法采用LMD分解语音信号,对分解后的各语音分量做短时傅里叶变换后进行频率合成... 针对发音障碍患者发音不够清晰准确,导致病理语音识别率低的问题,提出一种基于LMD改进的Gammatone滤波器组图谱特征提取算法进行三路病理语音识别,首先,该算法采用LMD分解语音信号,对分解后的各语音分量做短时傅里叶变换后进行频率合成,提取滤波器组特征及其一阶、二阶差分特征,构成能获取病理语音有效局部特征的LMD-GFbank图谱特征;其次,为了进一步优化网络模型在训练过程中遗漏掉部分有效特征信息,提出一种三路病理语音识别模型;最后,结合语音特征信息进行病理语音识别模型训练和测试。实验结果表明,LMD-GFbank图谱特征在三路病理语音识别模型上的识别率达到了93.36%,优于传统MFCC、GFCC、Fbank特征的语音识别效果,验证了所提算法及识别模型能提升病理语音识别准确率。 展开更多
关键词 发音障碍 局部均值分解 病理语音识别 特征提取
在线阅读 下载PDF
基于BIC-PCA和LMD的朔黄铁路边坡变形预测方法 被引量:1
8
作者 胡方磊 《导航定位学报》 CSCD 北大核心 2024年第5期149-155,共7页
针对全球卫星导航系统(GNSS)监测数据处理中噪声抑制和变形信息提取精度不高等问题,提出一种联合使用贝叶斯信息准则(BIC)-主成分分析(PCA)和局部均值分解(LMD)的GNSS铁路边坡变形数据处理及信息提取方法:考虑PCA主分量个数确定,将贝叶... 针对全球卫星导航系统(GNSS)监测数据处理中噪声抑制和变形信息提取精度不高等问题,提出一种联合使用贝叶斯信息准则(BIC)-主成分分析(PCA)和局部均值分解(LMD)的GNSS铁路边坡变形数据处理及信息提取方法:考虑PCA主分量个数确定,将贝叶斯信息准则引入PCA建立BIC-PCA模型;进而利用BIC-PCA对变形监测数据进行分析,实现噪声抑制;然后利用LMD算法对噪声抑制后的监测数据进行分析,从中提取周期项、趋势项和波动项等隐含的变形信息;最后建立支持向量回归(SVR)模型,对未来变形趋势进行预测。实验结果表明,所提方法预测精度较高且噪声稳健性较强,预测结果的均方根(RMS)误差和平均预测误差(APRE)分别为6.30和7.26,远小于反向传播(BP)神经网络和灰色GM(1,1)模型。 展开更多
关键词 全球卫星导航系统(GNSS) 铁路边坡 变形预测 数据分析 噪声抑制 局部均值分解(lmd)
在线阅读 下载PDF
基于LMD与AO-PNN的中介轴承故障诊断方法 被引量:4
9
作者 徐石 栾孝驰 +2 位作者 李彦徵 沙云东 郭小鹏 《航空发动机》 北大核心 2024年第2期114-120,共7页
针对航空发动机中介轴承受噪声干扰大、传递路径复杂导致采用传统方法难以进行故障诊断的问题,提出了一种基于局部均值分解(LMD)与相关系数-能量比-峭度准则、结合天鹰座优化算法(AO)优化概率神经网络(PNN)的中介轴承故障诊断方法。使用... 针对航空发动机中介轴承受噪声干扰大、传递路径复杂导致采用传统方法难以进行故障诊断的问题,提出了一种基于局部均值分解(LMD)与相关系数-能量比-峭度准则、结合天鹰座优化算法(AO)优化概率神经网络(PNN)的中介轴承故障诊断方法。使用LMD对传感器采集的振动信号进行分解;利用相关系数-能量比-峭度准则判决筛选分解得到的PF分量,重构筛选后的信号;计算重构信号的多尺度排列熵(MPE),以构建特征向量;通过AO优化的PNN的平滑因子,将优化后的神经网络用于中介轴承的故障诊断。基于中介轴承故障试验数据对诊断结果进行了分析,结果表明:提出的方法可以有效诊断高背景噪声、复杂路径干扰下的航空发动机中介轴承的典型故障,与粒子群优化的概率神经网络方法(PSO-PNN)和传统的PNN方法相比,其诊断准确率分别提高了3.875%和8.125%,具有较好的全局收敛性和计算鲁棒性。 展开更多
关键词 局部均值分解 故障诊断 相关系数-能量比-峭度准则 多尺度排列熵 天鹰座优化算法 中介轴承 航空发动机
在线阅读 下载PDF
GA-2D-VMD联合FNLM的医学超声图像去噪方法研究
10
作者 闫洪波 那毅然 +1 位作者 沈雅楠 徐洋 《机械设计与制造》 北大核心 2025年第2期375-379,384,共6页
医学超声成像过程中出现的斑点噪声,降低了图像的可视性,传统算法在去噪后可能会出现图像边缘细节模糊、去噪效果不佳等问题。针对于此,提出了基于遗传算法优化的2D-VMD与FNLM相结合的方法。首先利用遗传算法对2D-VMD的两个参数同时进... 医学超声成像过程中出现的斑点噪声,降低了图像的可视性,传统算法在去噪后可能会出现图像边缘细节模糊、去噪效果不佳等问题。针对于此,提出了基于遗传算法优化的2D-VMD与FNLM相结合的方法。首先利用遗传算法对2D-VMD的两个参数同时进行自适应寻优,接着采用优化2D-VMD分解噪声图像,并借助相关系数筛选有效分量,然后使用FNLM滤波去噪,最后将去噪后的子模态重构完成去噪。实验结果证明,该方法具有优秀的去噪效果和保留图像边缘细节信息的能力,客观评价指标亦有明显的提升。 展开更多
关键词 斑点噪声 遗传算法 二维变分模态分解 参数优化 快速非局部均值 图像去噪
在线阅读 下载PDF
基于LMD近似熵和FCM聚类的机械故障诊断研究 被引量:97
11
作者 张淑清 孙国秀 +2 位作者 李亮 李新新 监雄 《仪器仪表学报》 EI CAS CSCD 北大核心 2013年第3期714-720,共7页
提出一种基于局部均值分解(local mean decomposition,LMD)近似熵和模糊C均值聚类(fuzzy C-means clustering,FCM)相结合的机械故障诊断方法。首先对机械振动信号进行LMD分解,得到若干具有物理意义的乘积函数(product function,PF)分量... 提出一种基于局部均值分解(local mean decomposition,LMD)近似熵和模糊C均值聚类(fuzzy C-means clustering,FCM)相结合的机械故障诊断方法。首先对机械振动信号进行LMD分解,得到若干具有物理意义的乘积函数(product function,PF)分量,再通过相关性分析,筛选出与原始信号相关性最大的3个分量作为数据源,求取其近似熵作为特征向量,最后通过FCM模糊聚类对特征向量进行识别分类。实验表明,基于LMD近似熵和FCM模糊聚类相结合的方法对机械故障信号能够有效准确地进行识别分类,此外,将该方法与基于EMD近似熵和FCM结合的方法进行对比,结果表明该方法具有更好的故障识别效果。 展开更多
关键词 局部均值分解 模糊C均值聚类 近似熵 故障诊断
在线阅读 下载PDF
小波包降噪与LMD相结合的滚动轴承故障诊断方法 被引量:92
12
作者 孙伟 熊邦书 +1 位作者 黄建萍 莫燕 《振动与冲击》 EI CSCD 北大核心 2012年第18期153-156,共4页
局部均值分解(Local Mean Decomposition,简称LMD)方法是一种新的自适应时频分析方法,并成功运用于滚动轴承故障诊断中,但对噪声比较敏感。为消除噪声对诊断结果的影响,提出了一种小波包降噪与LMD相结合的滚动轴承故障诊断方法。该方法... 局部均值分解(Local Mean Decomposition,简称LMD)方法是一种新的自适应时频分析方法,并成功运用于滚动轴承故障诊断中,但对噪声比较敏感。为消除噪声对诊断结果的影响,提出了一种小波包降噪与LMD相结合的滚动轴承故障诊断方法。该方法首先利用小波包去除信号中的噪声,然后,进行LMD分解,并将分解后PF分量与分解前信号的相关系数作为判断标准,剔除多余低频PF分量,最后,选取有效PF集进行功率谱分析,提取故障特征。通过仿真数据和真实滚动轴承数据的故障诊断实验,其结果验证了该方法的有效性。 展开更多
关键词 滚动轴承 故障诊断 lmd 小波包降噪
在线阅读 下载PDF
LMD时频分析方法的端点效应在旋转机械故障诊断中的影响 被引量:28
13
作者 任达千 杨世锡 +1 位作者 吴昭同 严拱标 《中国机械工程》 EI CAS CSCD 北大核心 2012年第8期951-956,共6页
为评估局域均值分解(LMD)受端点效应影响的程度,提出了一种基于能量的端点效应评价指标,并将LMD的端点效应与经验模态分解(EMD)的端点效应进行了比较。因包络线的定义方法不同,LMD在端点附近未定义的包络线较短,端点效应的程度也较轻。... 为评估局域均值分解(LMD)受端点效应影响的程度,提出了一种基于能量的端点效应评价指标,并将LMD的端点效应与经验模态分解(EMD)的端点效应进行了比较。因包络线的定义方法不同,LMD在端点附近未定义的包络线较短,端点效应的程度也较轻。提出的端点效应镜像延拓抑制方法经仿真证明效果良好。将LMD应用于提取转子裂纹的故障特征,可获得满意的实验结果。 展开更多
关键词 旋转机械 故障诊断 转子裂纹 局域均值分解 端点效应
在线阅读 下载PDF
基于LMD边际谱的柴油机气门故障诊断 被引量:15
14
作者 刘昱 张俊红 +3 位作者 毕凤荣 林杰威 李维伟 鲁鑫 《内燃机工程》 EI CAS CSCD 北大核心 2014年第6期96-100,共5页
针对柴油机气门间隙故障诊断问题,在WP7柴油机上模拟了多种气门间隙故障,测取了正常及故障条件下的缸盖振动信号。考虑柴油机缸盖振动信号具有非平稳的特点,提出一种基于局部均值分解边际谱和马氏距离的故障诊断方法。该方法在LMD边际... 针对柴油机气门间隙故障诊断问题,在WP7柴油机上模拟了多种气门间隙故障,测取了正常及故障条件下的缸盖振动信号。考虑柴油机缸盖振动信号具有非平稳的特点,提出一种基于局部均值分解边际谱和马氏距离的故障诊断方法。该方法在LMD边际谱的基础上定义了频率中心,并以此作为柴油机气门间隙的故障特征,利用马氏距离判断柴油机气门的工作状态。试验结果表明:该方法可以有效地提取柴油机气门间隙故障特征,实现柴油机气门机构故障诊断。 展开更多
关键词 内燃机 柴油机 气门间隙 局部均值分解 边际谱 马氏距离
在线阅读 下载PDF
基于LMD母线差动保护CT饱和检测方法研究 被引量:16
15
作者 罗慧 周卿松 +2 位作者 苗洪雷 徐舜 曾祥君 《电力系统保护与控制》 EI CSCD 北大核心 2015年第12期49-54,共6页
为解决由于CT饱和而引起的保护不能进行可靠动作的问题,提出一种适用于母线差动保护的基于局部均值分解(LMD)原理的CT饱和检测和故障区判定方法。对流过母差保护的CT暂态电流进行局部均值分解,通过高频分量瞬时频率的突变检测CT的饱和... 为解决由于CT饱和而引起的保护不能进行可靠动作的问题,提出一种适用于母线差动保护的基于局部均值分解(LMD)原理的CT饱和检测和故障区判定方法。对流过母差保护的CT暂态电流进行局部均值分解,通过高频分量瞬时频率的突变检测CT的饱和。依据差动电流分解得到的瞬时频率发生突变的间隔时间的不同,对母线发生区内故障、区外故障以及一般转换性故障进行故障识别。用EMTP-ATP软件对所提方法进行了仿真,结果表明该方法能检测CT的饱和,并准确对CT饱和情况下的故障类型进行识别。 展开更多
关键词 局部均值分解 电流互感器饱和 瞬时频率 检测 间隔时间
在线阅读 下载PDF
基于LMD的谱峭度方法在齿轮故障诊断中的应用 被引量:33
16
作者 程军圣 杨怡 杨宇 《振动与冲击》 EI CSCD 北大核心 2012年第18期20-23,54,共5页
针对齿轮故障振动信号的非平稳调制特性以及传统共振解调方法不易确定滤波器参数的缺点,提出了一种基于局部均值分解(Local Mean Decomposition,LMD)时频分析的谱峭度(Spectrum Kurtosis,SK)分析方法,并将其应用于齿轮故障诊断。该方法... 针对齿轮故障振动信号的非平稳调制特性以及传统共振解调方法不易确定滤波器参数的缺点,提出了一种基于局部均值分解(Local Mean Decomposition,LMD)时频分析的谱峭度(Spectrum Kurtosis,SK)分析方法,并将其应用于齿轮故障诊断。该方法首先利用LMD对齿轮故障振动信号进行分析得到时频分布,然后将时频分布按照不同的尺度分成若干不同的频段,计算每一频段内信号的谱峭度值,并得到相应的峭度图,再根据峭度最大原则选取滤波频段,对滤波后的信号进行包络分析以获得齿轮振动信号的故障信息。利用该方法分别对仿真信号以及齿轮故障振动信号进行了分析,结果表明,基于LMD的谱峭度分析方法能够有效地提取齿轮故障振动信号特征。 展开更多
关键词 局部均值分解 时频分析 谱峭度 齿轮故障诊断
在线阅读 下载PDF
基于LMD和HMM的旋转机械故障诊断 被引量:20
17
作者 孟宗 闫晓丽 王亚超 《中国机械工程》 EI CAS CSCD 北大核心 2014年第21期2942-2946,2951,共6页
提出了基于局部均值分解(LMD)和隐马尔科夫模型(HMM)的旋转机械故障诊断方法。首先,对故障信号进行局部均值分解,提取瞬时能量作为故障特征向量;然后将故障特征向量输入HMM分类器进行模式识别,输出各状态的似然概率;以最大似然概率所对... 提出了基于局部均值分解(LMD)和隐马尔科夫模型(HMM)的旋转机械故障诊断方法。首先,对故障信号进行局部均值分解,提取瞬时能量作为故障特征向量;然后将故障特征向量输入HMM分类器进行模式识别,输出各状态的似然概率;以最大似然概率所对应的故障状态为诊断结果。通过滚动轴承点蚀故障诊断试验验证了该方法的有效性,并将其与基于EMD-HMM的故障诊断方法进行了比较。结果表明,基于LMD-HMM的故障诊断方法更适用于旋转机械的故障诊断。 展开更多
关键词 故障诊断 旋转机械 局部均值分解 隐马尔科夫模型
在线阅读 下载PDF
基于LMD的能量算子解调机械故障诊断方法 被引量:19
18
作者 程军圣 杨怡 杨宇 《振动.测试与诊断》 EI CSCD 北大核心 2012年第6期915-919,1033,共5页
为了提取多分量调幅调频信号的幅值和频率信息,提出了基于局部均值分解(local mean decomposition,简称LMD)的能量算子解调机械故障诊断方法。该方法先利用LMD将机械调制信号分解成若干个乘积函数(production function,简称PF)分量,然... 为了提取多分量调幅调频信号的幅值和频率信息,提出了基于局部均值分解(local mean decomposition,简称LMD)的能量算子解调机械故障诊断方法。该方法先利用LMD将机械调制信号分解成若干个乘积函数(production function,简称PF)分量,然后对每一个PF分量进行能量算子解调,获得信号的幅值和频率信息进行故障诊断。利用该方法对仿真信号以及轴承和齿轮故障振动信号进行实验研究的结果表明,基于LMD的能量算子解调方法能够有效地提取机械故障振动信号特征。 展开更多
关键词 局部均值分解 PF分量 能量算子解调 故障诊断
在线阅读 下载PDF
基于LMD多尺度熵和概率神经网络的滚动轴承故障诊断方法 被引量:37
19
作者 孟宗 胡猛 +1 位作者 谷伟明 赵东方 《中国机械工程》 EI CAS CSCD 北大核心 2016年第4期433-437,共5页
研究了一种基于LMD多尺度熵和概率神经网络的滚动轴承故障诊断方法。该方法将故障信号自适应地分解为若干乘积函数分量,然后将各分量的多尺度熵作为故障特征向量输入概率神经网络进行模式识别,实现了对损伤位置和损伤程度的诊断。将该... 研究了一种基于LMD多尺度熵和概率神经网络的滚动轴承故障诊断方法。该方法将故障信号自适应地分解为若干乘积函数分量,然后将各分量的多尺度熵作为故障特征向量输入概率神经网络进行模式识别,实现了对损伤位置和损伤程度的诊断。将该方法与基于LMD时域统计量和神经网络的滚动轴承故障诊断方法进行了对比。实验结果表明,基于LMD多尺度熵和概率神经网络的方法能对滚动轴承故障进行有效的识别与诊断。 展开更多
关键词 局部均值分解 故障特征提取 多尺度熵 概率神经网络 故障诊断
在线阅读 下载PDF
基于自相关分析和LMD的滚动轴承振动信号故障特征提取 被引量:39
20
作者 王建国 吴林峰 秦绪华 《中国机械工程》 EI CAS CSCD 北大核心 2014年第2期186-191,共6页
滚动轴承的故障信号是非平稳的、多分量的调制信号,特别是故障早期,由于调制源弱,早期故障信号微弱且受周围设备的噪声干扰,导致故障特征难以识别。采用自相关分析和局域均值分解(LMD)方法提取故障特征。首先采用自相关分析提取信号中... 滚动轴承的故障信号是非平稳的、多分量的调制信号,特别是故障早期,由于调制源弱,早期故障信号微弱且受周围设备的噪声干扰,导致故障特征难以识别。采用自相关分析和局域均值分解(LMD)方法提取故障特征。首先采用自相关分析提取信号中的周期成分,消除噪声的干扰,然后利用局域均值分解方法将多分量的调制信号分解为若干个PF分量之和,再结合共振解调技术对PF分量进行包络分析以提取故障特征频率。实验证明了方法的有效性。 展开更多
关键词 滚动轴承 自相关分析 局域均值分解(lmd) 故障诊断
在线阅读 下载PDF
上一页 1 2 15 下一页 到第
使用帮助 返回顶部