期刊文献+
共找到370篇文章
< 1 2 19 >
每页显示 20 50 100
基于L-M神经网络的高温矿井进风井筒风温预测方法
1
作者 韦家正 覃晓 《中国矿业》 北大核心 2025年第9期209-215,共7页
高温矿井进风井筒风温受多种因素共同影响,这些因素间存在复杂且动态的非线性关系,导致风温预测模型需具备实时更新和适应新数据源及条件的能力。然而,这种动态性变化增加了模型学习训练的难度,进而影响了预测结果的准确性。为解决这一... 高温矿井进风井筒风温受多种因素共同影响,这些因素间存在复杂且动态的非线性关系,导致风温预测模型需具备实时更新和适应新数据源及条件的能力。然而,这种动态性变化增加了模型学习训练的难度,进而影响了预测结果的准确性。为解决这一问题,提出基于L-M神经网络的高温矿井进风井筒风温预测方法。采用DEMATEL方法对这些复杂且动态的影响因素进行筛选和确定,以确保所选指标能够准确反映矿井环境对风温的影响。基于筛选出的输入指标,构建井筒风温预测模型。为进一步提升模型的学习与拟合能力,应用L-M算法对神经网络进行优化。实验结果显示,该预测方法的最大预测误差不超过2℃,拟合系数稳定在0.95左右,充分证明了该方法在高温矿井进风井筒风温预测中的准确性和可靠性。与其他传统预测方法相比,该方法不仅显著提高了预测精度,还为矿井通风管理提供了更为可靠和科学的决策依据。因此,基于L-M神经网络的高温矿井进风井筒风温预测方法为实现精确的风温预测提供了一种有效且实用的手段。 展开更多
关键词 l-m算法 神经网络 输入指标 进风井筒 风温预测
在线阅读 下载PDF
基于改进VMD和L-M神经网络的局部放电信号去噪 被引量:1
2
作者 袁莎莎 李梦莹 +3 位作者 戴莹莹 江超 杨传凯 薛亮 《计算机应用与软件》 北大核心 2025年第2期323-329,373,共8页
为有效去除局部放电信号中的噪声干扰,提出改进VMD(Variational Mode Decomposition)算法和L-M神经网络的去噪方法。利用噪声预处理结合分解能量误差自适应地确定VMD算法的最优模态分解层数;引入正态分布直方图区分局部放电信号和窄带... 为有效去除局部放电信号中的噪声干扰,提出改进VMD(Variational Mode Decomposition)算法和L-M神经网络的去噪方法。利用噪声预处理结合分解能量误差自适应地确定VMD算法的最优模态分解层数;引入正态分布直方图区分局部放电信号和窄带干扰信号,重构局部放电信号;利用L-M神经网络对残留白噪声进行拟合滤除。所提方法对仿真和实测信号进行去噪处理,并与传统去噪方法对比。结果表明,所提方法的去噪评估指标更明显,对噪声干扰的去除效果更优。 展开更多
关键词 局部放电 VmD算法 l-m神经网络 窄带干扰 白噪声
在线阅读 下载PDF
基于L-M算法的铝合金铸造过程界面换热系数的反问题模型 被引量:1
3
作者 王一帆 温治 +1 位作者 豆瑞锋 于博 《热加工工艺》 北大核心 2024年第9期122-129,共8页
铝合金铸造过程铸件-铸模之间的界面换热系数的变化非常复杂,且预测非常困难。本文基于L-M(Levenberg-Marquardt)算法建立了铝合金铸造过程传热反问题模型,通过反问题分析获得铝合金铸造过程中铸件-铸模界面换热系数。通过将铸件-铸模... 铝合金铸造过程铸件-铸模之间的界面换热系数的变化非常复杂,且预测非常困难。本文基于L-M(Levenberg-Marquardt)算法建立了铝合金铸造过程传热反问题模型,通过反问题分析获得铝合金铸造过程中铸件-铸模界面换热系数。通过将铸件-铸模界面换热系数反演值与标准值进行比较,验证传热反问题模型的准确性。在此基础上,分析了铸模上测点位置(与铸件-铸模界面距离、相邻测点间距)和温度测量误差对铸件-铸模界面换热系数反演值的影响规律,并给出了最优的测点布置方案和温度测量误差要求。通过铝合金铸造实验,用该反问题模型能求解出铝合金凝固过程中的铸件-铸模界面换热系数。 展开更多
关键词 铸造 反传热模型 LEVENBERG-mARQUARDT算法 界面换热系数 凝固
在线阅读 下载PDF
Application of the L-M optimized algorithm to predicting blast vibration parameters 被引量:6
4
作者 张艺峰 姚道平 +2 位作者 谢志招 杨江峰 叶友权 《地震学报》 CSCD 北大核心 2008年第5期540-544,554,共5页
当前,以振动峰值作为单一爆破振动安全指标的回归经验公式,在国内外爆破工程界得到广泛应用.但由于爆破机理和爆破介质环境复杂,影响因素诸多,很难用一个经验公式把这些因素都考虑进去;再加上回归分析方法固有的局限性(要求数据... 当前,以振动峰值作为单一爆破振动安全指标的回归经验公式,在国内外爆破工程界得到广泛应用.但由于爆破机理和爆破介质环境复杂,影响因素诸多,很难用一个经验公式把这些因素都考虑进去;再加上回归分析方法固有的局限性(要求数据有较好的分布规律和大样本量),经验公式方法进行振动预测的效果不甚理想(李保珍,1997;陈寿如,2001;张继春,2001). 展开更多
关键词 爆破振动 神经网络 l-m算法 预测
在线阅读 下载PDF
基于多头LSTM模型的南疆枣树土壤墒情预测 被引量:1
5
作者 杨轶航 吕德生 +4 位作者 刘宁宁 王振华 李淼 张金珠 王东旺 《水资源与水工程学报》 北大核心 2025年第2期207-217,共11页
在南疆枣业生产中,准确预测土壤墒情对于优化作物种植质量和制定灌溉计划至关重要。通过建立高精度的土壤墒情预测模型,为南疆枣树的灌溉管理提供了科学依据。基于2021和2022年的全生育期枣树在20、40、60、80 cm土层的土壤墒情数据、... 在南疆枣业生产中,准确预测土壤墒情对于优化作物种植质量和制定灌溉计划至关重要。通过建立高精度的土壤墒情预测模型,为南疆枣树的灌溉管理提供了科学依据。基于2021和2022年的全生育期枣树在20、40、60、80 cm土层的土壤墒情数据、气象数据以及灌溉水量等小时级数据集,采用长短期记忆神经网络(LSTM)模型对各土层土壤墒情进行多步预测。引入了由4个单一LSTM模型组成的多头LSTM模型,旨在扩大预测范围并提高预测精度,并采用k折交叉验证结合麻雀搜索算法(SSA)对每个单一LSTM模型进行超参数调优,以提升模型的泛化能力和准确性。对各单一模型的输出进行加权平均,获得最终的预测结果。结果表明:在4个土层墒情均值数据集上,多头LSTM模型对未来1、12、24、48 h的土壤墒情预测的决定系数(R^(2))分别提升至0.951、0.932、0.870、0.815;多头LSTM模型可有效提升枣树土壤墒情的中长期预测精度,特别是在24和48 h的预测中,改进效果尤为明显,这为枣树的精细化灌溉管理提供了有力支持,可帮助农民更有效地利用水资源,减少浪费。 展开更多
关键词 土壤墒情预测 多头LSTm 麻雀搜索算法 k折交叉验证 南疆滴灌骏枣
在线阅读 下载PDF
基于深度学习算法的G-M制冷机低温泵冷头故障诊断研究
6
作者 彭刚 王玉青 +5 位作者 王辉 朱剑豪 王旭迪 何智 武义锋 邓家良 《真空科学与技术学报》 北大核心 2025年第5期408-413,共6页
G-M制冷机低温泵是一种广泛应用于半导体制造等领域的重要设备,对超高真空的获得与维持至关重要。由于其长期连续运行,容易引发机械磨损等故障,导致制冷能力和抽气特性下降。因此,开展有效的故障诊断显得尤为关键,文章提出一种改进型遗... G-M制冷机低温泵是一种广泛应用于半导体制造等领域的重要设备,对超高真空的获得与维持至关重要。由于其长期连续运行,容易引发机械磨损等故障,导致制冷能力和抽气特性下降。因此,开展有效的故障诊断显得尤为关键,文章提出一种改进型遗传算法与反向传播神经网络的故障诊断方法,克服了传统反向传播神经网络依赖初始权重与阈值设置、优化效率低的问题。研究结果表明,该方法在故障诊断中的准确率达98.05%。为低温泵健康监测与故障预警提供了科学依据。 展开更多
关键词 G-m制冷机低温泵 故障诊断 深度学习 遗传算法
在线阅读 下载PDF
基于L-M优化算法的BP神经网络的作物需水量预测模型 被引量:50
7
作者 张兵 袁寿其 +2 位作者 成立 袁建平 从小青 《农业工程学报》 EI CAS CSCD 北大核心 2004年第6期73-76,共4页
应用L-M优化算法BP神经网络,通过多维气象数据(太阳辐射、空气温度、湿度)与作物需水量的相关分析,来确定网络的拓扑结构,建立作物需水量的人工神经网络模型。用美国田纳西州大学高原实验室所测的100d气象数据为输入、作物需水量为输出... 应用L-M优化算法BP神经网络,通过多维气象数据(太阳辐射、空气温度、湿度)与作物需水量的相关分析,来确定网络的拓扑结构,建立作物需水量的人工神经网络模型。用美国田纳西州大学高原实验室所测的100d气象数据为输入、作物需水量为输出来训练建立好的BP神经网络,仿真表明该神经网络能很好地解决需水量多影响因素之间的不确定性和非线性,模型的预测精度较高,同时通过一组非样本天气环境参数和作物需水量来验证该神经网络,也得到了较好的预测结果,能够满足灌溉的精度要求。 展开更多
关键词 BP神经网络 作物需水量 L—m优化算法 预测模型
在线阅读 下载PDF
混合威布尔分布参数估计的L-M算法 被引量:20
8
作者 凌丹 黄洪钟 +1 位作者 张小玲 蒋工亮 《电子科技大学学报》 EI CAS CSCD 北大核心 2008年第4期634-636,640,共4页
混合威布尔分布模型常用来分析具有多种失效模式的机械系统或零部件的可靠性寿命数据,为提高混合威布尔分布未知参数估计的精度,利用非线性最小二乘理论,建立了小子样条件下两重混合威布尔分布参数优化估计模型,将L-M算法用于优化求解... 混合威布尔分布模型常用来分析具有多种失效模式的机械系统或零部件的可靠性寿命数据,为提高混合威布尔分布未知参数估计的精度,利用非线性最小二乘理论,建立了小子样条件下两重混合威布尔分布参数优化估计模型,将L-M算法用于优化求解。以概率图参数估计法的结果作为迭代初始值,提高了迭代求解的速度。计算实例表明利用该方法估计混合威布尔分布参数是可行的,而且能够获得较精确的结果。 展开更多
关键词 l-m算法 混合威布尔分布 非线性最小二乘 参数估计
在线阅读 下载PDF
基于L-M优化算法的水稻螟虫预测模型及其初步应用 被引量:15
9
作者 高艳萍 于红 +2 位作者 崔新忠 姜国兴 王美妮 《农业工程学报》 EI CAS CSCD 北大核心 2007年第7期162-165,共4页
农村稻区水稻螟虫发生量与多种气候因素相关,各因素之间存在相互作用,是非线性系统。神经网络能有效地描述非线性模型多输入和不确定的特性。传统的BP网络在训练时易陷入局部极小点从而导致训练时间长、收敛速度慢,采用Levenberg-Marqua... 农村稻区水稻螟虫发生量与多种气候因素相关,各因素之间存在相互作用,是非线性系统。神经网络能有效地描述非线性模型多输入和不确定的特性。传统的BP网络在训练时易陷入局部极小点从而导致训练时间长、收敛速度慢,采用Levenberg-Marquardt优化算法(简称L-M算法)能克服其缺点。在MATLAB中应用L-M算法对辽宁盘锦田间稻区进行水稻螟虫发生量的仿真预测,试验结果表明L-M优化算法的预测精度和收敛速度明显提高,为稻区防控虫害和精确喷药提供参考,具有实用价值。 展开更多
关键词 神经网络 l-m优化算法 预测模型 水稻螟虫
在线阅读 下载PDF
一种基于L-M算法的组合神经网络模糊控制器 被引量:10
10
作者 尹志宇 李青茹 +1 位作者 李文娜 马龙生 《电光与控制》 北大核心 2006年第1期73-77,共5页
提出了一种基于L-M算法的神经网络模糊控制器。用两个相同的三层前向神经网络①和②来生成E和EC的隶属度,用三层前向神经网络③来实现模糊控制规则并生成控制输出,经过研究和对比选择了对于这3个网络来说最好的训练算法Levenberg-Marqua... 提出了一种基于L-M算法的神经网络模糊控制器。用两个相同的三层前向神经网络①和②来生成E和EC的隶属度,用三层前向神经网络③来实现模糊控制规则并生成控制输出,经过研究和对比选择了对于这3个网络来说最好的训练算法Levenberg-Marquardt算法。仿真结果表明了该控制器极好的控制性能。 展开更多
关键词 模糊控制 神经网络 l-m算法
在线阅读 下载PDF
基于L-M优化算法的猪舍氨气浓度预测模型研究 被引量:10
11
作者 谢秋菊 苏中滨 +3 位作者 刘佳荟 郑萍 马铁民 王雪 《东北农业大学学报》 CAS CSCD 北大核心 2014年第10期74-79,共6页
在规模化养殖中,猪舍环境直接影响猪健康水平及生产能力。针对猪舍环境因素(包括温度、湿度、风速和氨气浓度)进行数据采集,选取具有代表性30 d数据,建立基于L-M优化算法的3-7-1三层结构的BP神经网络模型,对猪舍环氨气浓度进行预测。结... 在规模化养殖中,猪舍环境直接影响猪健康水平及生产能力。针对猪舍环境因素(包括温度、湿度、风速和氨气浓度)进行数据采集,选取具有代表性30 d数据,建立基于L-M优化算法的3-7-1三层结构的BP神经网络模型,对猪舍环氨气浓度进行预测。结果表明,预测模型经过90步达到目标误差,网络收敛速度快,效率高,预测值与实测值最大相对误差仅为1.72%,与线性预测方法相比较可提高猪舍氨气浓度预测的准确性与及时性,为猪舍环境预警及控制提供支持,也为其他行业预测模型建立提供参考。 展开更多
关键词 l-m优化算法 BP神经网络 预测模型 猪舍氨气浓度
在线阅读 下载PDF
基于L-M优化算法的喷头射程神经网络预测模型 被引量:12
12
作者 王波雷 马孝义 郝晶晶 《农业机械学报》 EI CAS CSCD 北大核心 2008年第5期36-40,35,共6页
喷头射程受较多因素影响,各因素之间相互作用,是一个复杂的非线性系统。神经网络能有效地描述非线性模型多输入和不确定的特征。采用Levengerg-Marquardt优化算法对神经网络进行了改进,对获得的数据进行训练,建立了喷头射程预测中喷嘴... 喷头射程受较多因素影响,各因素之间相互作用,是一个复杂的非线性系统。神经网络能有效地描述非线性模型多输入和不确定的特征。采用Levengerg-Marquardt优化算法对神经网络进行了改进,对获得的数据进行训练,建立了喷头射程预测中喷嘴仰角、喷嘴直径和工作压力的映射网络模型,并模拟分析了喷头射程与其影响因素之间的变化规律。结果表明,用基于L-M算法的人工神经网络预测喷头射程时,不需要建立具体的模型,设计方便、运算迅速、仿真性强、精确度高。 展开更多
关键词 喷头射程 预测 神经网络 L—m优化算法
在线阅读 下载PDF
L-M神经网络的磨削淬硬参数预测 被引量:7
13
作者 潘忠峰 王贵成 +1 位作者 裴宏杰 刘菊东 《机械设计与制造》 北大核心 2009年第3期34-36,共3页
针对基于传统BP算法的神经网络训练中收敛速度较慢的缺点,提出一种基于L-M(Levenberg-Marquardt)算法的磨削淬硬层厚度预测,并开发了基于L-M算法的磨削淬硬神经网络预测系统。仿真结果表明:该系统模型显著缩短了训练时间,具有较高的准... 针对基于传统BP算法的神经网络训练中收敛速度较慢的缺点,提出一种基于L-M(Levenberg-Marquardt)算法的磨削淬硬层厚度预测,并开发了基于L-M算法的磨削淬硬神经网络预测系统。仿真结果表明:该系统模型显著缩短了训练时间,具有较高的准确性。通过网络训练和网络检验,得出该神经网络系统的预测值与实测值十分接近的结论,可充分证明L-M法BP神经网络对于磨削淬硬参数预测具有很好的效果。 展开更多
关键词 磨削淬硬 神经网络 l-m算法 预测
在线阅读 下载PDF
结合N-W方法的L-M算法在变压器故障诊断中的应用 被引量:2
14
作者 徐志钮 律方成 +1 位作者 刘云鹏 李燕青 《华北电力大学学报(自然科学版)》 CAS 北大核心 2005年第4期1-4,共4页
在分析Levenberg-Marquardt(L-M)算法和Nguyen-Widrow(N-W)方法原理的基础上,提出了一种多层前馈神经网络训练算法,该算法在使用N—W方法初始化神经网络可变参数的基础上使用L-M算法训练多层前馈神经网络。构造了适合于变压器油中溶解... 在分析Levenberg-Marquardt(L-M)算法和Nguyen-Widrow(N-W)方法原理的基础上,提出了一种多层前馈神经网络训练算法,该算法在使用N—W方法初始化神经网络可变参数的基础上使用L-M算法训练多层前馈神经网络。构造了适合于变压器油中溶解气体分析故障诊断的神经网络,使用了标准BP算法、加动量项BP算法和结合N-W方法的L-M算法训练该网络,结果表明算法收敛速度快、不容易陷入局部极小点。将训练所得网络用于变压器油中溶解气体分析故障诊断,诊断结果验证了该方法的有效性。 展开更多
关键词 l-m算法 故障诊断 变压器 油中溶解气体分析 多层前馈神经网络 应用 网络训练算法 BP算法 局部极小点 方法原理 可变参数 收敛速度 初始化 基础
在线阅读 下载PDF
基于L-M神经网络优化算法的池塘水色判别系统的初步建立 被引量:3
15
作者 王海英 曹晶 +2 位作者 谢骏 王广军 胡朝莹 《渔业现代化》 北大核心 2010年第5期19-21,37,共4页
为了将水产养殖水色判别传统技术经验转化为可以量化的数字技术,采用基于L-M神经网络优化算法和计算机图像处理技术的方法,建立了一个水色判别的水产养殖专家系统。通过实例预测,该系统判别误差率<1%。该系统训练后的神经网络模型,... 为了将水产养殖水色判别传统技术经验转化为可以量化的数字技术,采用基于L-M神经网络优化算法和计算机图像处理技术的方法,建立了一个水色判别的水产养殖专家系统。通过实例预测,该系统判别误差率<1%。该系统训练后的神经网络模型,能实现对养殖池塘水质的预测。系统的开发和使用对实现水产健康养殖、智能控制和计算机管理具有一定实用价值. 展开更多
关键词 水色图像 图像特征值 l-m神经网络优化算法 水质预测
在线阅读 下载PDF
采用L-M优化算法的设备状态预测 被引量:5
16
作者 龙红叶 熊峰 +1 位作者 胡小梅 卢鲜亮 《现代制造工程》 CSCD 北大核心 2012年第3期114-118,27,共6页
设备状态预测是设备预防性维护的重要组成部分。针对传统方法处理设备状态数据的不足,采用L-M优化算法进行设备状态预测。通过原始样本数据学习和训练BP神经网络,并用测试数据进行设备状态预测,实验证明该方法不仅在误差分析精度和收敛... 设备状态预测是设备预防性维护的重要组成部分。针对传统方法处理设备状态数据的不足,采用L-M优化算法进行设备状态预测。通过原始样本数据学习和训练BP神经网络,并用测试数据进行设备状态预测,实验证明该方法不仅在误差分析精度和收敛速度方面具有优良的性能,而且还证明了该算法的有效性。 展开更多
关键词 状态预测 l-m优化算法 特性曲线 有效预测
在线阅读 下载PDF
L-M优化算法BP网络在刀具磨损量预测中的应用 被引量:12
17
作者 关山 聂鹏 《机床与液压》 北大核心 2012年第15期22-26,共5页
在线刀具磨损量估算及其未来发展趋势预测对于指导现实生产有着十分重要的意义。提出基于L-M优化算法BP神经网络的刀具磨损量在线预测方法。对声发射信号进行小波包分解,得到32个不同频带内的信号,用于构造初始特征向量矩阵;对初始特征... 在线刀具磨损量估算及其未来发展趋势预测对于指导现实生产有着十分重要的意义。提出基于L-M优化算法BP神经网络的刀具磨损量在线预测方法。对声发射信号进行小波包分解,得到32个不同频带内的信号,用于构造初始特征向量矩阵;对初始特征向量矩阵进行奇异值分解,计算奇异谱,将奇异谱做为刀具磨损的特征向量,利用神经网络在线预测刀具磨损量。试验结果表明:预测结果能准确地跟踪实际的刀具磨损曲线,并且L-M优化算法比其他改进算法迭代次数少,收敛速度快,精确度高。 展开更多
关键词 刀具磨损量预测 l-m优化算法 BP神经网络 小波包分解 奇异值分解
在线阅读 下载PDF
基于改进L-M算法的NSV姿态系统模糊建模 被引量:1
18
作者 王宇飞 吴庆宪 姜长生 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2010年第S1期103-108,共6页
为了使T-S模糊系统能够更有效、精确地对非线性系统进行建模,提出了一种用于T-S模糊系统训练的改进的全局收敛Levenberg-Marquardt(L-M)算法,并给出了相应迭代步骤和模糊系统的在线训练方案.该算法是在局部误差界条件下,结合信赖域方法... 为了使T-S模糊系统能够更有效、精确地对非线性系统进行建模,提出了一种用于T-S模糊系统训练的改进的全局收敛Levenberg-Marquardt(L-M)算法,并给出了相应迭代步骤和模糊系统的在线训练方案.该算法是在局部误差界条件下,结合信赖域方法,根据逼近效果实时调节步长,有效避免了Jacobi矩阵奇异,并加快了算法的收敛速率.然后,将该算法应用于T-S模糊系统的训练中,在线调整模糊系统中各线性多项式的参数及模糊隶属度函数的参数,从而使模糊系统不过分依赖于专家经验,并且提高其逼近速度和精度.最后,将该算法运用于NSV姿态系统的T-S模糊建模中.仿真结果表明:该算法可以很好地逼近NSV姿态系统;与标准的L-M算法相比,该算法在保证精度的同时明显提高了收敛速度. 展开更多
关键词 T-S模糊 NSV姿态系统 l-m算法
在线阅读 下载PDF
L-M优化BP算法在短期负荷预测中的应用 被引量:3
19
作者 代小红 王光利 《计算机科学》 CSCD 北大核心 2011年第7期265-267,共3页
在分析传统BP算法的不足的基础上,提出了将Levenbery-Marquardt优化法与神经网络模型相结合的L-M优化BP算法。此方法与传统算法相比学习速度得到了提高,网络的收敛加快,尽量避免了系统陷入局部最小;针对某电力局某地区的单条线路的实际... 在分析传统BP算法的不足的基础上,提出了将Levenbery-Marquardt优化法与神经网络模型相结合的L-M优化BP算法。此方法与传统算法相比学习速度得到了提高,网络的收敛加快,尽量避免了系统陷入局部最小;针对某电力局某地区的单条线路的实际数据,采用基于Levenbery-Marquardt优化的BP算法的神经网络模型对其进行了仿真,结果表明该方法具有较高的预测精度和较强的适应能力。 展开更多
关键词 短期负荷预测 l-m优化法 BP算法 预测误差
在线阅读 下载PDF
基于L-M神经网络的道路交通噪声预测研究 被引量:7
20
作者 尹志宇 《中国环境监测》 CAS CSCD 北大核心 2009年第4期84-87,共4页
神经网络具有很强的预测功能。根据石家庄公路交通噪声的实测数据,利用L-M优化算法的多层神经网络预测模型进行道路交通噪声的预测,经检验,计算值与实测值接近,预测精度令人满意。
关键词 神经网络 交通噪声预测 L—m优化算法
在线阅读 下载PDF
上一页 1 2 19 下一页 到第
使用帮助 返回顶部