Joint probabilistic data association is an effective method for tracking multiple targets in clutter, but only the target kinematic information is used in measure-to-track association. If the kinematic likelihoods are...Joint probabilistic data association is an effective method for tracking multiple targets in clutter, but only the target kinematic information is used in measure-to-track association. If the kinematic likelihoods are similar for different closely spaced targets, there is ambiguity in using the kinematic information alone; the correct association probability will decrease in conventional joint probabilistic data association algorithm and track coalescence will occur easily. A modified algorithm of joint probabilistic data association with classification-aided is presented, which avoids track coalescence when tracking multiple neighboring targets. Firstly, an identification matrix is defined, which is used to simplify validation matrix to decrease computational complexity. Then, target class information is integrated into the data association process. Performance comparisons with and without the use of class information in JPDA are presented on multiple closely spaced maneuvering targets tracking problem. Simulation results quantify the benefits of classification-aided JPDA for improved multiple targets tracking, especially in the presence of association uncertainty in the kinematic measurement and target maneuvering. Simulation results indicate that the algorithm is valid.展开更多
In most of the passive tracking systems, only the target kinematical information is used in the measurement-to-track association, which results in error tracking in a multitarget environment, where the targets are too...In most of the passive tracking systems, only the target kinematical information is used in the measurement-to-track association, which results in error tracking in a multitarget environment, where the targets are too close to each other. To enhance the tracking accuracy, the target signal classification information (TSCI) should be used to improve the data association. The TSCI is integrated in the data association process using the JPDA (joint probabilistic data association). The use of the TSCI in the data association can improve discrimination by yielding a purer track and preserving continuity. To verify the validity of the application of TSCI, two simulation experiments are done on an air target-tracing problem, that is, one using the TSCI and the other not using the TSCI. The final comparison shows that the use of the TSCI can effectively improve tracking accuracy.展开更多
针对雷达邻近多目标跟踪问题,提出了一种基于变分推断的联合概率数据关联算法(Joint Probability Data Association,JPDA)。通过建立关于目标状态和两个关联指示的概率图模型,并根据不同变量之间的信息传递构造对应的自由能目标函数,迭...针对雷达邻近多目标跟踪问题,提出了一种基于变分推断的联合概率数据关联算法(Joint Probability Data Association,JPDA)。通过建立关于目标状态和两个关联指示的概率图模型,并根据不同变量之间的信息传递构造对应的自由能目标函数,迭代该目标函数求解出目标和当前检测量测之间的最佳边缘关联概率。将所提算法与经典JPDA和k近邻联合概率数据关联(k Nearest Neighbor-Joint Probability Data Association,kNN-JPDA)算法进行对比,结果表明新算法具备更高的跟踪位置精度,并且能够有效地避免因邻近目标数量增多而引起的计算上的组合爆炸问题。展开更多
针对杂波环境下的多目标跟踪数据关联存在跟踪精度低、实时性差的问题,提出了一种基于最大熵模糊聚类的联合概率数据关联算法(joint probabilistic data association algorithm based on maximum entropy fuzzy clustering,MEFC-JPDA)...针对杂波环境下的多目标跟踪数据关联存在跟踪精度低、实时性差的问题,提出了一种基于最大熵模糊聚类的联合概率数据关联算法(joint probabilistic data association algorithm based on maximum entropy fuzzy clustering,MEFC-JPDA)。首先,采用最大熵模糊聚类求得的隶属度初步表征目标与有效量测之间的关联概率。其次,采用基于目标距离的量测修正因子对关联概率进行调整,并建立关联概率矩阵。最后,结合卡尔曼滤波算法,对目标的状态进行加权更新。仿真结果表明,所提算法在杂波环境下的跟踪性能相比现有的两种关联算法有较大提升,是一种有效的多目标跟踪数据关联算法。展开更多
针对多扩展目标跟踪问题,提出了基于泊松点过程( Poisson Point Process, PPP )模型的多扩展目标跟踪的联合概率数据关联( Joint Probabilistic Data Association, JPDA )算法。首先,采用PPP对扩展目标进行测量建模,其次以“多对一”关...针对多扩展目标跟踪问题,提出了基于泊松点过程( Poisson Point Process, PPP )模型的多扩展目标跟踪的联合概率数据关联( Joint Probabilistic Data Association, JPDA )算法。首先,采用PPP对扩展目标进行测量建模,其次以“多对一”关联模型思想提出一种JPDA算法,从而计算运动目标的当前有效量测的边缘关联概率,然后结合该边缘关联概率以概率数据关联( Probability Data Association, PDA )的方式分别更新每个扩展目标的运动参数和形状参数向量,最后通过仿真实现了当扩展目标相互靠近或出现交叉时的跟踪。实验结果表明,在高杂波环境下,本文所提出的算法在计算时间和跟踪稳定上具有较明显的优势。展开更多
针对强杂波环境下,联合概率数据关联(Joint Probabilistic Data Association,JPDA)算法的计算复杂度不能满足复杂电磁环境下数据关联的实时性要求,本文提出了一种基于高分辨一维距离像(High Resolution one-dimensional Range Profile,H...针对强杂波环境下,联合概率数据关联(Joint Probabilistic Data Association,JPDA)算法的计算复杂度不能满足复杂电磁环境下数据关联的实时性要求,本文提出了一种基于高分辨一维距离像(High Resolution one-dimensional Range Profile,HRRP)特征辅助的JPDA算法。首先,计算量测与目标的HRRP特征相似度;然后利用特征相似度辅助JPDA算法完成波门搜索,减少可行事件的数量;最后使用特征相似度对可行事件的发生概率进行修正,进而修正量测与目标的关联概率。实验结果表明,本文算法提高了关联性能,同时还极大地提高了算法的实时性。展开更多
针对杂波环境下面向无源协同定位系统的多目标跟踪问题,提出一种基于KL散度(Kullback-Leibler Divergence,KLD)的联合概率数据关联算法(Joint Probabilistic Data Association,JPDA)。首先,在联合概率数据关联框架内计算关联事件的后验...针对杂波环境下面向无源协同定位系统的多目标跟踪问题,提出一种基于KL散度(Kullback-Leibler Divergence,KLD)的联合概率数据关联算法(Joint Probabilistic Data Association,JPDA)。首先,在联合概率数据关联框架内计算关联事件的后验概率密度函数,并计算该函数与高斯概率密度函数之间的KLD。其次,将KLD作为代价函数优化关联事件的后验概率密度函数。最后,根据优化的后验概率密度函数对目标状态进行估计。仿真结果表明,所提算法能有效解决杂波环境下多目标跟踪问题,提高跟踪性能。展开更多
针对杂波环境下联合概率数据关联算法(joint probabilistic data association,JPDA)计算复杂度较高、实时性较差等问题,提出一种基于最大熵模糊聚类的JPDA算法。基于目标轨迹和量测之间的关联规则,采用最大熵模糊聚类算法实现量测与目...针对杂波环境下联合概率数据关联算法(joint probabilistic data association,JPDA)计算复杂度较高、实时性较差等问题,提出一种基于最大熵模糊聚类的JPDA算法。基于目标轨迹和量测之间的关联规则,采用最大熵模糊聚类算法实现量测与目标的初步数据关联,分析了公共量测对目标跟踪的影响,并引入了公共量测影响系数来修正关联概率,最后使用卡尔曼滤波算法对目标的状态估计进行预测,从而更新各个目标的状态。仿真结果表明,所提算法有效解决了在密集杂波环境中JPDA算法组合爆炸问题,极大缩短计算时间,提高了算法的实时性。展开更多
基金Defense Advanced Research Project "the Techniques of Information Integrated Processing and Fusion" in the Eleventh Five-Year Plan (513060302).
文摘Joint probabilistic data association is an effective method for tracking multiple targets in clutter, but only the target kinematic information is used in measure-to-track association. If the kinematic likelihoods are similar for different closely spaced targets, there is ambiguity in using the kinematic information alone; the correct association probability will decrease in conventional joint probabilistic data association algorithm and track coalescence will occur easily. A modified algorithm of joint probabilistic data association with classification-aided is presented, which avoids track coalescence when tracking multiple neighboring targets. Firstly, an identification matrix is defined, which is used to simplify validation matrix to decrease computational complexity. Then, target class information is integrated into the data association process. Performance comparisons with and without the use of class information in JPDA are presented on multiple closely spaced maneuvering targets tracking problem. Simulation results quantify the benefits of classification-aided JPDA for improved multiple targets tracking, especially in the presence of association uncertainty in the kinematic measurement and target maneuvering. Simulation results indicate that the algorithm is valid.
基金the Youth Science and Technology Foundection of University of Electronic Science andTechnology of China (JX0622).
文摘In most of the passive tracking systems, only the target kinematical information is used in the measurement-to-track association, which results in error tracking in a multitarget environment, where the targets are too close to each other. To enhance the tracking accuracy, the target signal classification information (TSCI) should be used to improve the data association. The TSCI is integrated in the data association process using the JPDA (joint probabilistic data association). The use of the TSCI in the data association can improve discrimination by yielding a purer track and preserving continuity. To verify the validity of the application of TSCI, two simulation experiments are done on an air target-tracing problem, that is, one using the TSCI and the other not using the TSCI. The final comparison shows that the use of the TSCI can effectively improve tracking accuracy.
文摘针对雷达邻近多目标跟踪问题,提出了一种基于变分推断的联合概率数据关联算法(Joint Probability Data Association,JPDA)。通过建立关于目标状态和两个关联指示的概率图模型,并根据不同变量之间的信息传递构造对应的自由能目标函数,迭代该目标函数求解出目标和当前检测量测之间的最佳边缘关联概率。将所提算法与经典JPDA和k近邻联合概率数据关联(k Nearest Neighbor-Joint Probability Data Association,kNN-JPDA)算法进行对比,结果表明新算法具备更高的跟踪位置精度,并且能够有效地避免因邻近目标数量增多而引起的计算上的组合爆炸问题。
文摘针对杂波环境下的多目标跟踪数据关联存在跟踪精度低、实时性差的问题,提出了一种基于最大熵模糊聚类的联合概率数据关联算法(joint probabilistic data association algorithm based on maximum entropy fuzzy clustering,MEFC-JPDA)。首先,采用最大熵模糊聚类求得的隶属度初步表征目标与有效量测之间的关联概率。其次,采用基于目标距离的量测修正因子对关联概率进行调整,并建立关联概率矩阵。最后,结合卡尔曼滤波算法,对目标的状态进行加权更新。仿真结果表明,所提算法在杂波环境下的跟踪性能相比现有的两种关联算法有较大提升,是一种有效的多目标跟踪数据关联算法。
文摘针对多扩展目标跟踪问题,提出了基于泊松点过程( Poisson Point Process, PPP )模型的多扩展目标跟踪的联合概率数据关联( Joint Probabilistic Data Association, JPDA )算法。首先,采用PPP对扩展目标进行测量建模,其次以“多对一”关联模型思想提出一种JPDA算法,从而计算运动目标的当前有效量测的边缘关联概率,然后结合该边缘关联概率以概率数据关联( Probability Data Association, PDA )的方式分别更新每个扩展目标的运动参数和形状参数向量,最后通过仿真实现了当扩展目标相互靠近或出现交叉时的跟踪。实验结果表明,在高杂波环境下,本文所提出的算法在计算时间和跟踪稳定上具有较明显的优势。
文摘针对强杂波环境下,联合概率数据关联(Joint Probabilistic Data Association,JPDA)算法的计算复杂度不能满足复杂电磁环境下数据关联的实时性要求,本文提出了一种基于高分辨一维距离像(High Resolution one-dimensional Range Profile,HRRP)特征辅助的JPDA算法。首先,计算量测与目标的HRRP特征相似度;然后利用特征相似度辅助JPDA算法完成波门搜索,减少可行事件的数量;最后使用特征相似度对可行事件的发生概率进行修正,进而修正量测与目标的关联概率。实验结果表明,本文算法提高了关联性能,同时还极大地提高了算法的实时性。
文摘针对杂波环境下面向无源协同定位系统的多目标跟踪问题,提出一种基于KL散度(Kullback-Leibler Divergence,KLD)的联合概率数据关联算法(Joint Probabilistic Data Association,JPDA)。首先,在联合概率数据关联框架内计算关联事件的后验概率密度函数,并计算该函数与高斯概率密度函数之间的KLD。其次,将KLD作为代价函数优化关联事件的后验概率密度函数。最后,根据优化的后验概率密度函数对目标状态进行估计。仿真结果表明,所提算法能有效解决杂波环境下多目标跟踪问题,提高跟踪性能。
文摘针对杂波环境下联合概率数据关联算法(joint probabilistic data association,JPDA)计算复杂度较高、实时性较差等问题,提出一种基于最大熵模糊聚类的JPDA算法。基于目标轨迹和量测之间的关联规则,采用最大熵模糊聚类算法实现量测与目标的初步数据关联,分析了公共量测对目标跟踪的影响,并引入了公共量测影响系数来修正关联概率,最后使用卡尔曼滤波算法对目标的状态估计进行预测,从而更新各个目标的状态。仿真结果表明,所提算法有效解决了在密集杂波环境中JPDA算法组合爆炸问题,极大缩短计算时间,提高了算法的实时性。