期刊文献+
共找到60篇文章
< 1 2 3 >
每页显示 20 50 100
Modified joint probabilistic data association with classification-aided for multitarget tracking 被引量:9
1
作者 Ba Hongxin Cao Lei +1 位作者 He Xinyi Cheng Qun 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2008年第3期434-439,共6页
Joint probabilistic data association is an effective method for tracking multiple targets in clutter, but only the target kinematic information is used in measure-to-track association. If the kinematic likelihoods are... Joint probabilistic data association is an effective method for tracking multiple targets in clutter, but only the target kinematic information is used in measure-to-track association. If the kinematic likelihoods are similar for different closely spaced targets, there is ambiguity in using the kinematic information alone; the correct association probability will decrease in conventional joint probabilistic data association algorithm and track coalescence will occur easily. A modified algorithm of joint probabilistic data association with classification-aided is presented, which avoids track coalescence when tracking multiple neighboring targets. Firstly, an identification matrix is defined, which is used to simplify validation matrix to decrease computational complexity. Then, target class information is integrated into the data association process. Performance comparisons with and without the use of class information in JPDA are presented on multiple closely spaced maneuvering targets tracking problem. Simulation results quantify the benefits of classification-aided JPDA for improved multiple targets tracking, especially in the presence of association uncertainty in the kinematic measurement and target maneuvering. Simulation results indicate that the algorithm is valid. 展开更多
关键词 multi-target tracking data association joint probabilistic data association classification information track coalescence maneuvering target.
在线阅读 下载PDF
Data association based on target signal classification information 被引量:3
2
作者 Guo Lei Tang Bin Liu Gang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2008年第2期246-251,共6页
In most of the passive tracking systems, only the target kinematical information is used in the measurement-to-track association, which results in error tracking in a multitarget environment, where the targets are too... In most of the passive tracking systems, only the target kinematical information is used in the measurement-to-track association, which results in error tracking in a multitarget environment, where the targets are too close to each other. To enhance the tracking accuracy, the target signal classification information (TSCI) should be used to improve the data association. The TSCI is integrated in the data association process using the JPDA (joint probabilistic data association). The use of the TSCI in the data association can improve discrimination by yielding a purer track and preserving continuity. To verify the validity of the application of TSCI, two simulation experiments are done on an air target-tracing problem, that is, one using the TSCI and the other not using the TSCI. The final comparison shows that the use of the TSCI can effectively improve tracking accuracy. 展开更多
关键词 passive tracking joint probabilistic data association target signal classification information.
在线阅读 下载PDF
基于高斯粒子JPDA滤波的多目标跟踪算法 被引量:10
3
作者 张俊根 姬红兵 蔡绍晓 《电子与信息学报》 EI CSCD 北大核心 2010年第11期2686-2690,共5页
在多目标跟踪中,由于观测的不确定性带来数据关联问题,并且,多目标状态空间尺寸的增长带来了维数增大问题,该文提出了一种新的高斯粒子联合概率数据关联滤波算法(GP-JPDAF),在JPDA框架中引入高斯粒子滤波(GPF)的思想,通过高斯粒子而不... 在多目标跟踪中,由于观测的不确定性带来数据关联问题,并且,多目标状态空间尺寸的增长带来了维数增大问题,该文提出了一种新的高斯粒子联合概率数据关联滤波算法(GP-JPDAF),在JPDA框架中引入高斯粒子滤波(GPF)的思想,通过高斯粒子而不是高斯量,来近似目标与观测的边缘关联概率,利用GPF计算目标状态的预测及更新分布。将其应用于被动多传感器多目标跟踪,仿真结果表明该算法比MC-JPDAF具有更好的跟踪性能。 展开更多
关键词 多目标跟踪 联合概率数据关联 高斯粒子滤波 被动多传感器
在线阅读 下载PDF
多传感器多目标跟踪的JPDA算法 被引量:16
4
作者 巴宏欣 赵宗贵 +1 位作者 杨飞 曹雷 《系统仿真学报》 CAS CSCD 2004年第7期1563-1566,共4页
传统的联合概率数据关联算法(JPDA)是在密集杂波环境下的一种良好的多目标跟踪算法,但它是针对单传感器对多目标跟踪的情况下使用,不能直接用于多传感器对多目标的跟踪。针对这一问题,文中提出了一种适用于多传感器多目标跟踪的JPDA算法... 传统的联合概率数据关联算法(JPDA)是在密集杂波环境下的一种良好的多目标跟踪算法,但它是针对单传感器对多目标跟踪的情况下使用,不能直接用于多传感器对多目标的跟踪。针对这一问题,文中提出了一种适用于多传感器多目标跟踪的JPDA算法,它以极大似然估计完成对来自多传感器的测量集合进行同源最优分划,然后采用JPDA方法对多目标进行跟踪。经过理论分析和仿真试验,证明了该方法能有效地进行多传感器多目标的跟踪,且具有算法简单、跟踪精度高、附加的计算量小等优点。 展开更多
关键词 多传感器多目标跟踪(MMT) 极大似然估计 联合概率数据关联(jpda) 位置融合
在线阅读 下载PDF
基于QMC-IPF-JPDA的多目标无源协同定位算法 被引量:2
5
作者 陈明淑 李盛 赵婧 《火力与指挥控制》 CSCD 北大核心 2018年第5期29-32,38,共5页
针对杂波环境中多目标的检测跟踪问题,提出一种基于拟蒙特卡罗智能粒子滤波联合概率数据关联的无源协同定位算法。该算法建立双基站无源协同定位系统目标检测跟踪的数学模型。通过拟蒙特卡罗技术使粒子分布更加均匀,并对更新阶段的粒子... 针对杂波环境中多目标的检测跟踪问题,提出一种基于拟蒙特卡罗智能粒子滤波联合概率数据关联的无源协同定位算法。该算法建立双基站无源协同定位系统目标检测跟踪的数学模型。通过拟蒙特卡罗技术使粒子分布更加均匀,并对更新阶段的粒子进行交叉变异以提高粒子多样性。结合测量信息,利用联合概率数据关联算法实现多目标检测跟踪。仿真结果表明,所提算法能有效解决杂波环境下多目标检测跟踪问题,提高跟踪性能。 展开更多
关键词 多目标跟踪 拟蒙特卡罗 智能粒子滤波 联合概率数据关联 无源协同定位 双基站
在线阅读 下载PDF
Lie群下利用改进JPDA滤波器的智能车立体视觉多目标跟踪方法 被引量:2
6
作者 张琦 胡广地 +1 位作者 朱晓媛 陈亚东 《计算机应用研究》 CSCD 北大核心 2019年第10期3128-3131,共4页
提出基于改进联合概率数据关联滤波器的智能车立体视觉多目标跟踪方法。利用立体视觉摄像头采集车辆及行人图像、视频;在Lie群下对传感器的不确定性进行建模,并采用欧几里德群算法对预处理的图像进行状态滤波;在可能存在车辆的区域内利... 提出基于改进联合概率数据关联滤波器的智能车立体视觉多目标跟踪方法。利用立体视觉摄像头采集车辆及行人图像、视频;在Lie群下对传感器的不确定性进行建模,并采用欧几里德群算法对预处理的图像进行状态滤波;在可能存在车辆的区域内利用双目视觉去除误检,并获得车辆的位置信息;通过卡尔曼滤波器对测量的不确定度和预测目标运动的轨迹进行确认;运用改进的联合概率数据关联滤波器对车辆及行人的跟踪结果进行优化修正。实验结果表明,提出的方法可以有效解决智能车多目标跟踪问题,大幅度提升驾驶系统的自动化和智能化水平。相比其他较新的目标跟踪方法,提出的方法在跟踪精度和速度上具有明显的优势,且在跟踪车辆时不会产生明显的偏移、不会遗漏对行人的跟踪。 展开更多
关键词 智能驾驶系统 立体视觉 移动物体跟踪 联合综合概率数据关联 LIE群
在线阅读 下载PDF
一种基于变分推断的雷达多目标跟踪JPDA算法 被引量:4
7
作者 郑丹阳 曹林 +1 位作者 王涛 王东峰 《电讯技术》 北大核心 2021年第12期1540-1546,共7页
针对雷达邻近多目标跟踪问题,提出了一种基于变分推断的联合概率数据关联算法(Joint Probability Data Association,JPDA)。通过建立关于目标状态和两个关联指示的概率图模型,并根据不同变量之间的信息传递构造对应的自由能目标函数,迭... 针对雷达邻近多目标跟踪问题,提出了一种基于变分推断的联合概率数据关联算法(Joint Probability Data Association,JPDA)。通过建立关于目标状态和两个关联指示的概率图模型,并根据不同变量之间的信息传递构造对应的自由能目标函数,迭代该目标函数求解出目标和当前检测量测之间的最佳边缘关联概率。将所提算法与经典JPDA和k近邻联合概率数据关联(k Nearest Neighbor-Joint Probability Data Association,kNN-JPDA)算法进行对比,结果表明新算法具备更高的跟踪位置精度,并且能够有效地避免因邻近目标数量增多而引起的计算上的组合爆炸问题。 展开更多
关键词 多目标跟踪 变分推断 联合概率数据关联 概率图模型 边缘关联概率
在线阅读 下载PDF
一种耦合检测和JPDA滤波的多目标跟踪算法 被引量:3
8
作者 王云奇 孔令讲 +1 位作者 易伟 杨晓波 《雷达科学与技术》 2014年第2期143-148,共6页
传统雷达信号处理中对目标的检测和跟踪是割裂处理的,通常为先检测后跟踪(DBT);当目标的信噪比较低时,检测过程中将出现大量的虚警及漏检,使得后继的跟踪算法失效。针对这一问题,在联合处理检测和跟踪方法的基础上,提出了一种耦合贝叶... 传统雷达信号处理中对目标的检测和跟踪是割裂处理的,通常为先检测后跟踪(DBT);当目标的信噪比较低时,检测过程中将出现大量的虚警及漏检,使得后继的跟踪算法失效。针对这一问题,在联合处理检测和跟踪方法的基础上,提出了一种耦合贝叶斯检测和联合概率数据关联(JPDA)滤波的多目标跟踪算法(JPDAF-BD)。JPDA滤波器将目标的位置分布信息反馈到贝叶斯检测器,继而贝叶斯检测器将该反馈作为先验信息用于检测判决。仿真结果表明,所提出的JPDAF-BD算法较之传统DBT体制下的多目标跟踪算法(JPDAF-NP)有显著的性能提升,可以实现更低信噪比下的多目标检测和跟踪。 展开更多
关键词 检测后跟踪 贝叶斯检测 多目标跟踪 联合概率数据关联
在线阅读 下载PDF
杂波环境下基于最大熵模糊聚类的JPDA算法 被引量:4
9
作者 毕文豪 周杰 +1 位作者 张安 刘力 《系统工程与电子技术》 EI CSCD 北大核心 2023年第7期1920-1927,共8页
针对杂波环境下的多目标跟踪数据关联存在跟踪精度低、实时性差的问题,提出了一种基于最大熵模糊聚类的联合概率数据关联算法(joint probabilistic data association algorithm based on maximum entropy fuzzy clustering,MEFC-JPDA)... 针对杂波环境下的多目标跟踪数据关联存在跟踪精度低、实时性差的问题,提出了一种基于最大熵模糊聚类的联合概率数据关联算法(joint probabilistic data association algorithm based on maximum entropy fuzzy clustering,MEFC-JPDA)。首先,采用最大熵模糊聚类求得的隶属度初步表征目标与有效量测之间的关联概率。其次,采用基于目标距离的量测修正因子对关联概率进行调整,并建立关联概率矩阵。最后,结合卡尔曼滤波算法,对目标的状态进行加权更新。仿真结果表明,所提算法在杂波环境下的跟踪性能相比现有的两种关联算法有较大提升,是一种有效的多目标跟踪数据关联算法。 展开更多
关键词 多目标跟踪 联合概率数据关联 最大熵模糊聚类 量测修正因子
在线阅读 下载PDF
基于PPP模型的多扩展目标跟踪的JPDA算法研究 被引量:3
10
作者 杜浩翠 谢维信 范建德 《信号处理》 CSCD 北大核心 2019年第6期1079-1087,共9页
针对多扩展目标跟踪问题,提出了基于泊松点过程( Poisson Point Process, PPP )模型的多扩展目标跟踪的联合概率数据关联( Joint Probabilistic Data Association, JPDA )算法。首先,采用PPP对扩展目标进行测量建模,其次以“多对一”关... 针对多扩展目标跟踪问题,提出了基于泊松点过程( Poisson Point Process, PPP )模型的多扩展目标跟踪的联合概率数据关联( Joint Probabilistic Data Association, JPDA )算法。首先,采用PPP对扩展目标进行测量建模,其次以“多对一”关联模型思想提出一种JPDA算法,从而计算运动目标的当前有效量测的边缘关联概率,然后结合该边缘关联概率以概率数据关联( Probability Data Association, PDA )的方式分别更新每个扩展目标的运动参数和形状参数向量,最后通过仿真实现了当扩展目标相互靠近或出现交叉时的跟踪。实验结果表明,在高杂波环境下,本文所提出的算法在计算时间和跟踪稳定上具有较明显的优势。 展开更多
关键词 泊松点过程 多扩展目标跟踪 联合概率数据关联 “多对一”关联模型 边缘关联概率 形状参数
在线阅读 下载PDF
基于最优划分的多传感器多目标跟踪NNJPDA算法
11
作者 侯蒙 王睿 《空军工程大学学报(自然科学版)》 CSCD 北大核心 2006年第4期39-42,共4页
传统的最邻近联合概率数据关联算法(NNJPDA)不能直接用于多传感器对多目标的跟踪。针对这一问题,提出了一种适用于多传感器多目标跟踪的最邻近联合概率数据关联算法,它以极大似然估计完成对来自多传感器的测量集合进行同源最优划分,然... 传统的最邻近联合概率数据关联算法(NNJPDA)不能直接用于多传感器对多目标的跟踪。针对这一问题,提出了一种适用于多传感器多目标跟踪的最邻近联合概率数据关联算法,它以极大似然估计完成对来自多传感器的测量集合进行同源最优划分,然后采用NNJPDA方法对多目标进行跟踪。经过理论分析和仿真试验,证明了该方法能有效地进行多传感器多目标的跟踪,且具有算法简单、跟踪精度高、附加计算量小等优点。 展开更多
关键词 多传感器多目标跟踪 极大似然估计 最邻近联合概率数据关联 位置融合
在线阅读 下载PDF
一种HRRP特征辅助的多目标JPDA算法 被引量:2
12
作者 韩卓茜 王锋 +1 位作者 李卓伦 李宏洋 《信号处理》 CSCD 北大核心 2020年第10期1727-1734,共8页
针对强杂波环境下,联合概率数据关联(Joint Probabilistic Data Association,JPDA)算法的计算复杂度不能满足复杂电磁环境下数据关联的实时性要求,本文提出了一种基于高分辨一维距离像(High Resolution one-dimensional Range Profile,H... 针对强杂波环境下,联合概率数据关联(Joint Probabilistic Data Association,JPDA)算法的计算复杂度不能满足复杂电磁环境下数据关联的实时性要求,本文提出了一种基于高分辨一维距离像(High Resolution one-dimensional Range Profile,HRRP)特征辅助的JPDA算法。首先,计算量测与目标的HRRP特征相似度;然后利用特征相似度辅助JPDA算法完成波门搜索,减少可行事件的数量;最后使用特征相似度对可行事件的发生概率进行修正,进而修正量测与目标的关联概率。实验结果表明,本文算法提高了关联性能,同时还极大地提高了算法的实时性。 展开更多
关键词 联合概率数据关联 特征辅助 高分辨一维距离像 特征相似度
在线阅读 下载PDF
基于KLD-JPDA的多目标无源协同定位算法 被引量:2
13
作者 郭云飞 钱文杲 袁继成 《传感技术学报》 CAS CSCD 北大核心 2020年第6期889-894,共6页
针对杂波环境下面向无源协同定位系统的多目标跟踪问题,提出一种基于KL散度(Kullback-Leibler Divergence,KLD)的联合概率数据关联算法(Joint Probabilistic Data Association,JPDA)。首先,在联合概率数据关联框架内计算关联事件的后验... 针对杂波环境下面向无源协同定位系统的多目标跟踪问题,提出一种基于KL散度(Kullback-Leibler Divergence,KLD)的联合概率数据关联算法(Joint Probabilistic Data Association,JPDA)。首先,在联合概率数据关联框架内计算关联事件的后验概率密度函数,并计算该函数与高斯概率密度函数之间的KLD。其次,将KLD作为代价函数优化关联事件的后验概率密度函数。最后,根据优化的后验概率密度函数对目标状态进行估计。仿真结果表明,所提算法能有效解决杂波环境下多目标跟踪问题,提高跟踪性能。 展开更多
关键词 多目标跟踪 无源协同定位 KL散度 联合概率数据关联 概率密度函数 代价函数
在线阅读 下载PDF
基于最大熵模糊聚类简化的联合概率数据关联算法
14
作者 韩继辉 高龙 +2 位作者 黄子奇 黄道颖 张安琳 《火力与指挥控制》 CSCD 北大核心 2024年第12期62-67,76,共7页
针对杂波环境下联合概率数据关联算法(joint probabilistic data association,JPDA)计算复杂度较高、实时性较差等问题,提出一种基于最大熵模糊聚类的JPDA算法。基于目标轨迹和量测之间的关联规则,采用最大熵模糊聚类算法实现量测与目... 针对杂波环境下联合概率数据关联算法(joint probabilistic data association,JPDA)计算复杂度较高、实时性较差等问题,提出一种基于最大熵模糊聚类的JPDA算法。基于目标轨迹和量测之间的关联规则,采用最大熵模糊聚类算法实现量测与目标的初步数据关联,分析了公共量测对目标跟踪的影响,并引入了公共量测影响系数来修正关联概率,最后使用卡尔曼滤波算法对目标的状态估计进行预测,从而更新各个目标的状态。仿真结果表明,所提算法有效解决了在密集杂波环境中JPDA算法组合爆炸问题,极大缩短计算时间,提高了算法的实时性。 展开更多
关键词 多目标跟踪 联合概率数据关联算法 最大熵模糊聚类
在线阅读 下载PDF
基于证据理论的联合概率数据关联算法 被引量:12
15
作者 康健 李一兵 +1 位作者 林云 谢红 《系统工程与电子技术》 EI CSCD 北大核心 2013年第8期1620-1626,共7页
数据关联是目标跟踪技术中的核心部分,多目标情况下的数据关联技术更是研究的重点,由于多目标量测之间的互相干扰、外部环境干扰以及传感器性能等客观因素的约束,使得量测信息部分存在着相应的量测误差,密集环境中的多目标跟踪比较困难... 数据关联是目标跟踪技术中的核心部分,多目标情况下的数据关联技术更是研究的重点,由于多目标量测之间的互相干扰、外部环境干扰以及传感器性能等客观因素的约束,使得量测信息部分存在着相应的量测误差,密集环境中的多目标跟踪比较困难。针对这个问题,提出的新算法利用联合概率数据关联方法进行密集杂波环境下的数据关联,结合证据理论的思想对多传感器量测信息进行优化组合,有效地减小了量测误差对跟踪目标的影响。通过仿真结果可以看出,改进算法大大提高了跟踪精度,并具有良好的抗干扰能力,适用于解决工程实际问题。 展开更多
关键词 信息融合 数据关联 证据理论 联合概率数据关联
在线阅读 下载PDF
基于最大熵模糊聚类的快速多目标跟踪算法研究 被引量:10
16
作者 陈晓 李亚安 +1 位作者 蔚婧 李余兴 《西北工业大学学报》 EI CAS CSCD 北大核心 2017年第4期629-634,共6页
为了提高杂波环境中多目标跟踪的实时性和精确性,利用最大熵数据模糊聚类方法得到的模糊隶属度表示目标与量测之间的关联概率,同时分析了公共量测对目标的影响,引入影响因子重建互联概率矩阵,结合概率数据关联算法实现多目标的状态估计... 为了提高杂波环境中多目标跟踪的实时性和精确性,利用最大熵数据模糊聚类方法得到的模糊隶属度表示目标与量测之间的关联概率,同时分析了公共量测对目标的影响,引入影响因子重建互联概率矩阵,结合概率数据关联算法实现多目标的状态估计。该算法避免了对确认矩阵的拆分,解决了联合概率数据关联算法随着目标和回波数目增加而导致的计算量爆炸性增长问题。针对不同杂波密度环境下的临近平行目标和小角度交叉目标的跟踪进行了仿真分析,仿真结果表明:最大熵模糊聚类联合概率数据关联算法是一种有效的快速数据关联算法,在密集杂波环境中跟踪性能依然优于联合概率数据关联算法和经验联合概率数据关联算法,在一定程度上可以避免航迹融合。 展开更多
关键词 多目标跟踪 联合概率数据关联 经验联合概率数据关联 最大熵模糊聚类联合概率数据关联
在线阅读 下载PDF
融合热释电红外传感器与视频监控器的多目标跟踪算法 被引量:5
17
作者 李方敏 姜娜 +1 位作者 熊迹 张景源 《电子学报》 EI CAS CSCD 北大核心 2014年第4期672-678,共7页
现有基于热释电红外传感器的多目标跟踪系统在目标之间距离较近或者轨迹相交的情况下存在着误差较大的缺点.针对此缺点,提出了一种新型的基于热释电红外传感器与视频监测器协同工作的多目标跟踪方案.该方案可以充分利用两种传感器的优势... 现有基于热释电红外传感器的多目标跟踪系统在目标之间距离较近或者轨迹相交的情况下存在着误差较大的缺点.针对此缺点,提出了一种新型的基于热释电红外传感器与视频监测器协同工作的多目标跟踪方案.该方案可以充分利用两种传感器的优势,弥补在目标跟踪中的不足.算法采用最小二乘法利用热释电信息进行定位,并通过从图像或热释电传感器信号的幅频特性中提取特征信息来校正联合概率数据关联算法的关联矩阵,有效避免了错误关联.实验表明,该方案在多目标交叉情况下跟踪误差仅为其它算法的八分之一到四分之一. 展开更多
关键词 热释电红外(PIR)传感器 视频监控器 目标跟踪 联合概率数据关联算法
在线阅读 下载PDF
多目标实时跟踪的一种数据关联算法 被引量:5
18
作者 郭阳明 秦卫华 +1 位作者 翟正军 姜红梅 《西北工业大学学报》 EI CAS CSCD 北大核心 2007年第5期699-702,共4页
联合概率数据关联是密集杂波环境下跟踪效果最理想的数据关联算法之一。文中在研究概率数据关联算法的基础上,提出了一种快速数据关联算法。通过不同阈值的选择,去除小概率事件,建立确认矩阵,再根据被跟踪目标跟踪门的相交情况,将跟踪... 联合概率数据关联是密集杂波环境下跟踪效果最理想的数据关联算法之一。文中在研究概率数据关联算法的基础上,提出了一种快速数据关联算法。通过不同阈值的选择,去除小概率事件,建立确认矩阵,再根据被跟踪目标跟踪门的相交情况,将跟踪空间划分成若干相互独立的区域。对同一区域内公共量测的概率密度值进行衰减,计算出关联概率。仿真实验结果表明,该算法能显著减少可行联合事件的搜索时间和数量,可以有效解决JPDA算法计算量过大的问题,且便于工程实现。 展开更多
关键词 联合数据关联 多目标跟踪 实时 确认矩阵 关联概率
在线阅读 下载PDF
一种改进的多传感器多目标跟踪联合概率数据关联算法研究 被引量:18
19
作者 耿峰 祝小平 《系统仿真学报》 EI CAS CSCD 北大核心 2007年第20期4671-4675,共5页
联合概率数据关联(JPDA)算法对单传感器多目标跟踪是一种良好的算法,但对于多传感器多目标跟踪的情况,特别是目标较为密集时,计算量剧增,会出现计算组合爆炸现象。因此,提出了一种改进算法,即对多传感器多目标量测进行同源划分,将多传... 联合概率数据关联(JPDA)算法对单传感器多目标跟踪是一种良好的算法,但对于多传感器多目标跟踪的情况,特别是目标较为密集时,计算量剧增,会出现计算组合爆炸现象。因此,提出了一种改进算法,即对多传感器多目标量测进行同源划分,将多传感器对多目标的跟踪问题简化为单传感器对多目标的跟踪问题,然后将JPDA当作一种组合优化问题,采用连续型Hopfield神经网络求解关联概率。经仿真研究表明,该方法不仅克服了JPDA算法在多传感器多目标跟踪问题中的缺陷,还提高了跟踪精度。 展开更多
关键词 多传感器多目标跟踪 联合概率数据关联 HOPFIELD神经网络 卡尔曼滤波
在线阅读 下载PDF
集中交互式多传感器联合概率数据互联算法 被引量:7
20
作者 张晶炜 熊伟 何友 《光电工程》 EI CAS CSCD 北大核心 2006年第11期26-30,共5页
为了解决杂波环境下多传感器多机动目标跟踪问题,本文提出了一种集中交互式多传感器联合概率数据互联算法。本文提出的算法首先应用广义S-D分配的规则对每个传感器送来的观测数据进行排列组合,并对所有的测量组合进行有效性判断,然后应... 为了解决杂波环境下多传感器多机动目标跟踪问题,本文提出了一种集中交互式多传感器联合概率数据互联算法。本文提出的算法首先应用广义S-D分配的规则对每个传感器送来的观测数据进行排列组合,并对所有的测量组合进行有效性判断,然后应用数据压缩的方法将每个有效量测组合压缩成一个等效量测点并根据每个等效量测点的联合似然函数计算其联合互联概率,最后在此基础上应用交互式多模型算法的思想以处理目标出现机动的问题。本文最后给出了该算法的分析,仿真结果表明,本文算法能够很好地解决杂波环境下多传感器多机动目标的跟踪问题。 展开更多
关键词 多传感器 数据互联 交互式多模型 联合概率数据互联
在线阅读 下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部