期刊文献+

一种耦合检测和JPDA滤波的多目标跟踪算法 被引量:3

Integration of Detection with JPDAF for Multi-Target Tracking
在线阅读 下载PDF
导出
摘要 传统雷达信号处理中对目标的检测和跟踪是割裂处理的,通常为先检测后跟踪(DBT);当目标的信噪比较低时,检测过程中将出现大量的虚警及漏检,使得后继的跟踪算法失效。针对这一问题,在联合处理检测和跟踪方法的基础上,提出了一种耦合贝叶斯检测和联合概率数据关联(JPDA)滤波的多目标跟踪算法(JPDAF-BD)。JPDA滤波器将目标的位置分布信息反馈到贝叶斯检测器,继而贝叶斯检测器将该反馈作为先验信息用于检测判决。仿真结果表明,所提出的JPDAF-BD算法较之传统DBT体制下的多目标跟踪算法(JPDAF-NP)有显著的性能提升,可以实现更低信噪比下的多目标检测和跟踪。 Target detection and tracking in conventional radar signal processing are treated separately, namely detection before tracking(DBT).When the signal to noise ratio is low,the tracking algorithm will not work because of too many false alarms and missed alarms in the detection.In view of this problem,the method of coupling detection and tracking is studied,and an integration of Bayesian detection with JPDAF (JPDAF-BD)algorithm is proposed.JPDA filter provides the posterior distribution of the targets location to the detector,then the Bayesian detector utilizes the feed-back as prior information.Simulation results show that the proposed JPDAF-BD can detect and track multi-target successfully in lower SNR in comparison with the traditional multi-target tracking algorithm(JPDAF-NP),which obtains considerable performance improvement.
出处 《雷达科学与技术》 2014年第2期143-148,共6页 Radar Science and Technology
基金 国家自然科学基金(No.61178068) 新世纪优秀人才计划(No.A1098524023901001063)
关键词 检测后跟踪 贝叶斯检测 多目标跟踪 联合概率数据关联 detection before tracking(DBT) Bayesian detection multi-target tracking joint probabi-listic data association(JPDA)
作者简介 王云奇男,1991年生于河北邯郸,硕士研究生,土要研究方向为榆测和跟踪联合优化技术。Email:wamgyq@163.com 孔令讲 男,1974年生于河南南阳,博士,现任电子科技大学电子工程学院教授、博士生导师,主要研究方向为新体制雷达系统设计、目标检测估计和统计信号处理. 易伟男,1983年生,博士,现任电子科技大学电子工程学院讲师,主要研究方向为微弱目标检测前跟踪技术。 杨晓波男,1964年生,博士,现任电子科技大学电子工程学院教授、博土生导师,主要研究方向为甫达系统、雷达成像信号处理。
  • 相关文献

参考文献12

  • 1BAR-SHALOM Y, DAUM F, HUANG J. The Probabilistic Data Association Filter[J]. IEEE Con- trol Systems, 2009, 29(6):82-100.
  • 2KIRUBARAJ AN T, BAR-SHAI.OM Y. Probabilistic Data Association Techniques for Target Tracking in Clutter[J]. Proceedings of the IEEE, 2004, 92(3): 536- 557.
  • 3HAO L. A Possibilistic Data Association Based Algo rithm for Multi-Target Tracking[C] // 2013 Third In- ternational Conference on Intelligent System Design and Engineering Applications (ISDEA), Hong Kong: IEEE, 2013:158-162.
  • 4FORTMANN T, BAR SHALOM Y, SCHEFFE M, et al. Detection Thresholds for Tracking in Clutter- A Connection Between Estimation and Signal Process- ing[J]. IEEE Trans on Automatic Control, 1985, 30 (3) :221-229.
  • 5BOERS Y, DRIESSEN H. Modified Riccati Equation and Its Application to Target Tracking [C]//lEE Proceedings Radar, Sonar and Navigation, 2006, 153 (1) : 7-12.
  • 6ASLAN M S, SARANLI A. Threshold Optimization for Tracking a Nonmaneuvering Target [J]. IEEETrans on Aerospace and Electronic Systems, 2011, 47 (4) :2844- 2859.
  • 7ZENG T, ZHENG L, LI Y, ctal. Offline Perform ance Prediction of PDAF with Bayesian Detection for Tracking in Clutter[J]. IEEE Trans on Signal Pro- cessing, 2013, 61(3):770- 781.
  • 8BREKKE E, HAI.I.INGSTAD O, GI.ATTETRE J. The Modified Riccati Equation for Amplitude Aided Target Tracking in Heavy Tailed Clutter[J].IEF.E Trans on Aerospace and Electronic Systems, 2011 , 47 (4) :2874- 2886.
  • 9WILLETT P, NIU R, BAR-SHALOM Y. Integra tion of Bayes Detection with Target Tracking[J].IEEE frans on Signal Processing, 2001, 49 (1) :17 -29.
  • 10HABTEMARIAM B, THARMARASA R, THAYAPA- RAN T, et al. A MuhipleDetection Joint Probabilis6c Data Association Filter[J]. IEEE Journal of .Selected T6p ics in Signal Processing. 2013, 7(3) :461- 471.

二级参考文献10

  • 1Salmond D J, Birch H. A Particle Filter for Track-Be fore-Detect[C]//Proceedings of the American Control Conference, Arlington, VA :USA, 2001:3755-3760.
  • 2Boers Y, Driessen J N. Multitarget Particle Filter Track Before Detect Application[J]. IEE Proceedings of Radar, Sonar and Navigation, 2004, 151 (6) :351 -357.
  • 3Liu Z J, Xie S L, Ren X Y. Detection and Tracking of a Moving Point Target in Infrared Image Sequence Using Auxiliary Particle Filter[C]//Machine Learning and Cybernetics, 2008 International Conference, Kun ming, China:[s. n.], 2008:2530-2533.
  • 4Arulampalam M S, Maskell S, Gordon N, et al. A Tutorial on Particle Filters for on I.ine Nonlinear/ Non-Gaussian Bayesian Tracking[J]. IEEE Trans on Signal Processing, 2002, 50(2) .- 174-188.
  • 5刘彬.微弱目标检测前跟踪算法研究[D].成都:电子科技大学研究生学院,20]0.
  • 6Skoglar P, Orguner U, Tornqvist D, et al. Road Tar get Tracking with an Approximative Rao-Black wellized Particle Filter[C]//12th International Confer ence on Information Fusion, Seattle, WA, USA [s. n. ], 2009 : 17-24.
  • 7Arulampalam M S, Gordon N, Orton M, et al. A Variable Structure Multiple Model Particle Filter for GMTI Tracking[C]//Proc of the International Con ference on Information Fusion, Adelaide, SA, Aus- tralia .. [s. n. ], 2002 : 927-934.
  • 8Ristic B, Arulampalam S, Gordon N. Beyond the Kalman Filter:Particle Filters for Tracking Applica tions[M]. Boston:Artech House, 2004:1-299.
  • 9荆丹,王俊.基于粒子滤波理论的雷达多目标TBD检测[J].雷达科学与技术,2008,6(1):48-51. 被引量:6
  • 10龚亚信,杨宏文,胡卫东,郁文贤.基于多模粒子滤波的机动弱目标检测前跟踪[J].电子与信息学报,2008,30(4):941-944. 被引量:30

同被引文献21

  • 1BOERS Y, DRIESSEN J N. Multitarget Particle Fil- ter Track-Before-Detect Application[J]. IEE Proceed- ings Radar. Sonar and Navigation, 2004, 151(6) :351- 357.
  • 2MAHLER R. Multitarget Bayes Filtering via First- Order Multitarget Moments[J]. IEEE Trans on Aer- ospace and Electronics Systems, 2003, 39(4).. 1152- 1178.
  • 3VO B N, S1NGH S, DOUCET A. Sequential Monte Carlo Methods for Muhitarget Filtering with Random Finite Sets[J]. IEEE Trans on Aerospace and Elec- tronics Systems. 2005. 41(4) .. 1224-1245.
  • 4VO B N, MAW K. The Gaussian Mixture Probabili- ty Hypothesis Density Filter[J]. IEEE Trans on Sig- nal Processing, 2006, 5,1( 11 ) ..4091-4104.
  • 5PUNITHAKUMAR K, KIRUBARAJAN T, SINHA A. A Sequential Monte Carlo Probability Hypothesis Densily Algorithm for Multitargct Track-Before- Detect[C]//17th Conference on Signal and Data Pro- cessing of Small Targets, San Diego, CA: SHE, 2005:1-8.
  • 6HABTEMARIAM B K, THARMARASA R, KIRUBARAJAN T. PHD Filter Based Track-Be- fore-Detect for MIMO Radars[J]. Signal Process- ing, 2012, 92(3) :667-678.
  • 7LEHMANN F, Recursive Bayesian Filtering for Muhitarget Track-Before-Detect in Passive Radars [J].IEEE Trans on Aerospace and Electronics Sys- tems, 2012, 48(3)=2458-2480.
  • 8G()NZAI.EZ-DUARTE S, CHAC()N-MURGUIA M I. Rao-Blackweltized Particle Filter for Multiple ()b- jeer Tracking in Video Analysis[C]//llth Interna- tional Conference on Electrical Engineering, Compu- ting Science and Automatic Control, Campeche: IEEE, 2014:978-985.
  • 9V1HOI,A M. Rao-Blackwellised Particle Filtering in Random Set Muhitarget Tracking[J].IEEE Trans 6n Aerospace and Electronics Systems, 2007, 43(2) : 689-705.
  • 10庄泽森,张建秋,尹建君.Rao-Blackwellized粒子概率假设密度滤波算法[J].航空学报,2009,30(4):698-705. 被引量:17

引证文献3

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部