期刊文献+
共找到5,815篇文章
< 1 2 250 >
每页显示 20 50 100
Protective effects of imperatorin against cerebral ischemia/reperfusion-induced oxidative stress through Nrf2 signaling pathway in rats 被引量:2
1
作者 Wei HE Wei-wei CHEN +2 位作者 Xian-hua HUANG Yu-mei ZHOU Fang LIAO 《中国药理学与毒理学杂志》 CAS CSCD 北大核心 2017年第10期988-988,共1页
OBJECTIVE To investigates the effects of imperatorin on the oxidative stress in the cerebral cortex and hippocampus after focal cerebral ischemia/reperfusion injury.METHODS Transient focal cerebral ischemia/reperfusio... OBJECTIVE To investigates the effects of imperatorin on the oxidative stress in the cerebral cortex and hippocampus after focal cerebral ischemia/reperfusion injury.METHODS Transient focal cerebral ischemia/reperfusion model in male Sprague-Dawley rats was induced by 2 h middle cerebral artery occlusion followed by 24 h reperfusion.Imperatorin(1.25 and 2.5 mg·kg-1)or vehicle were administered intraperitoneally at 1,5 and 9 h after the onset of ischemia.At 24 h after reperfusion,the biomarkers of oxidative stress such as the levels of reactive oxygen species(ROS),lipid peroxidation products malondialdehyde(MDA),nitric oxide(NO)and total antioxidant capacity(T-AOC),the activities of inducible nitric oxide synthase(iN OS),superoxide dismutase(SOD)and catalase(CAT)in the cerebral cortex and hippocampus were observed.We also assessed the nuclear factor erythroid 2-related factor 2(Nrf2),heme oxygenase-1(HO-1),and the NAD(P)H-quinone oxidoreductase 1(NQO-1)protein expression by Western blot.RESULTS As compared to vehicle-treated animals,imperatorin treatment significantly reduced the ROS,MDA,NO levels and i NOS activity,increased T-AOC and the activities of SOD and CAT.Furthermore,imperatorin treatment also significantly induced the nuclear translocation of Nrf2,enhanced the protein expression of HO-1 and NQO-1 in the cerebral cortex and hippocampus.CONCLUSION Our findings indicate that imperatorin can protect the brain against the excessive oxidative stress induced by cerebral ischemia/reperfusion through activation of Nrf2 signaling pathway. 展开更多
关键词 IMPERATORIN cerebral ischemia/reperfusion reactive oxygen species nuclear factor erythroid 2-related factor 2
在线阅读 下载PDF
Effects of reduction of Sheng-Nao-Kang decoction in focal cerebral ischemia/reperfusion model rats
2
《中国药理学通报》 CAS CSCD 北大核心 2015年第B11期151-151,共1页
Aim Reduction of Sheng-Nao-Kang decoction (RSNK), is a modified traditional Chinese medicinal formula of Sheng-Nao-Kang pill preparation, which is protective in rats against focal cerebral ischemia/reperfusion (I/R... Aim Reduction of Sheng-Nao-Kang decoction (RSNK), is a modified traditional Chinese medicinal formula of Sheng-Nao-Kang pill preparation, which is protective in rats against focal cerebral ischemia/reperfusion (I/R) injury. In the current study, we investigate the protective effect of RSNK against apoptosis and oxidative damage induced by cerebral I/R and explore the underlying mechanisms. Cerebral I/R injury was induced by in- traluminal middle cerebral artery occlusion (MCAO) for 2 h followed by reperfusion for 24 h in adult male Sprague- Dawley rats. Rats were randomized into seven groups (n- 8): Sham group, I/R group, RSNK-treated groups ( 0.7 g · kg ^- 1, 1 . 4 g · kg ^- 1 and 2. 8 g · kg^ - 1 ) , nimodipine (NMP) -treated group and Whitmania pigra Whitman (WW)-treated group. Neurological deficit scores, cerebral humidity content and cerebral infarction volume were measured after the 24 h reperfusion. Malondialdehyde ( MDA), superoxide dismutase ( SOD), catalase ( CAT), inducible nitric oxide synthase (iNOS) and total nitric oxide synthase (TNOS) in serum were measured by assay kits for biochemical analysis. Histological structures of the cortex of the ipsilateral ischemic cerebral hemisphere in rats were observed by Nissl staining. The caspase-3 protein content in the hippocampus and cortex was detected by immunohistochemistry. Additionally, Bax and Bcl-2 protein expressions in the injured brain were evaluated by Western blot. RSNK administration not only markedly improved neurological deficit scores, but also reduced cere- bral humidity content and cerebral infarction volume, lowered MDA content, up-regulated SOD and CAT levels, down-regulated iNOS and TNOS levels, restrained the expression of caspase-3 positive protein and alleviated the Bax and Bcl-2 protein expressions. 展开更多
关键词 reduction of Sheng-Nao-Kang DECOCTION (RSNK) middle cerebral artery occlusion focal cerebral is-chemia/reperfusion injury anti-apoptosis anti-oxidation protect effect.
在线阅读 下载PDF
Moderate alcohol preconditioning activates BKCa channels to protect brain damage-induced by cerebral ischemia and reperfusion
3
作者 ZHAO Yi-Long GUO An-Chen +1 位作者 WANG Yong-Jun WANG Qun 《中国药理学与毒理学杂志》 CAS CSCD 北大核心 2016年第10期1023-1024,共2页
OBJCETIVE Epidemiologic studies have demonstrated that consumption of moderate amounts of red wine is associated with significant reductions in incidences of cardiovascular and cerebrovascular diseases,which may be re... OBJCETIVE Epidemiologic studies have demonstrated that consumption of moderate amounts of red wine is associated with significant reductions in incidences of cardiovascular and cerebrovascular diseases,which may be related to alcohol in red wine.Our previous study demonstrated that ethanol ingestion 24 h prior to induction of cerebral ischemic/reperfusion(I/R)reduced delayed neuronal death(DND).Our most recent results supported a role for big Ca2+-sensitive K+channel(BKCa channel)activation in the neuroprotective effects of ethanol preconditioning(Et OH-PC)in global cerebral I/R.Therefore,we hypothesis that moderate Et OH-PC activates BKCa channel to protect brain damage induced by focal cerebral I/R.This project will utilize focal cerebral I/R animal model to explore the function of BKCa channel in Et OH-PC protection in vivo levels by means of pharmacological intervention such as BKCa channel opene(rNS11021,NS)and blocke(rpaxilline,PX).The results will provide theoretical evidence for neuroprotective effect of moderate alcohol preconditioning against ischemic stroke,and the conclusion will also bring to a concept that extrinsic moderate ethanol preconditioning may activate intrinsic protective mechanism in the brain.METHODS The SD rat were randomly divided into the following six groups(n=10):sham,I/R,Et OH-PC+I/R,NS11021-PC+I/R,paxilline+Et OH-PC+I/R,Paxilline+NS11021-PC+I/R.Both Et OH-PC and NS11021-PC(0.1mg·kg-1;ip)were induced 24 h before I/R.The volume of 95%ethanol to be instilled(inμL)was calculated as follows:〔body weight(g)×0.6〕+0.3.This volume of ethanol was mixed in 0.3 m L of sterile distilled water just before administration to the animals by gavage.The Paxilline(2.5 mg·kg-1;ip)was administered 10min beforeEt OH-PC and NS11021-PC.The right middle cerebral artery occlusion(MCAO)was produced by inversion of a 4-0-nylon filament.The filament was withdrawn 2 h after onset of MCAO and then reperfused.Neurological deficits and infarct volume were measured 24 h after I/R.Another 36 rats were randomly divided into 6 groups as above,6 in each group.DWI were performed 2h after ischemic and T2WI MRI were performed 24 h after I/R to observe the infarct volume of brain and the penumbra volume of brain in each group.Then rats were killed and detected the apoptotic cell death and degeneration of neurons.RESULTS Compared to I/R group,the neurological score(P<0.01),the infarct volume of brain(P<0.01),the infarct volume of ischemic penumbra(P<0.01),the percentage of apoptotic cell death(P<0.01)and the percentage of degenerative neurons(P<0.01)were significantly decreased after ethanol preconditioning,while these changes were reversed by paxilline(P<0.05);compared to I/R group,the neurological score(P<0.01),the infarct volume of brain(P<0.01),the infarct volume of ischemic penumbra(P<0.01),the percentage of apoptotic cell death(P<0.01)and the percentage of degenerative neurons(P<0.01)were significantly decreased after NS11021 preconditioning,while these changes were reversed by paxilline(P<0.05).CONCLUSION Our results show that moderate alcohol preconditioning activates BKCa channels to protect brain damage induced by focal cerebral I/R. 展开更多
关键词 ethanol preconditioning NEUROPROTECTION cerebral ischemia/reperfusion BKCa channels
在线阅读 下载PDF
β-arrestin 2 negatively regulates NOD2 mediated inflammatory signaling through the association with TRAF6 in cerebral ischemia-reperfusion injury
4
《中国药理学通报》 CAS CSCD 北大核心 2015年第B11期163-164,共2页
We recently reported that nucleotide-binding oligomerization domain (NOD) 2, an important cytoplasmic pattern recognition receptor, is involved in cerebral ischemia-reperfusion (I/R) injury. β-arrestins, in addit... We recently reported that nucleotide-binding oligomerization domain (NOD) 2, an important cytoplasmic pattern recognition receptor, is involved in cerebral ischemia-reperfusion (I/R) injury. β-arrestins, in addition to regulate desensitization of G protein-coupled receptors (GPCRs) , have emerged as potential mediators of innate im- mune activation. However, the role and mechanism of β-arrestin2 in NOD2-triggered signaling in the cerebral I/R remain to be established. Methods BV2 cells were transfected with either β-arrestin2-shRNA plasmid or β-arres- tin2 full-length plasmid and control vector. Middle cerebral artery occlusion (MCAO) was induced in male wild- type mice and in wild type (WT) and β-arrestin2 deficient mice. Results muramyl dipeptide (MDP), an extrin- sic ligand of NOD2, significantly increased the expression of TRAF6 and COX-2 and enhanced the activation of NF- KB in the microglia time-dependently. MDP stimulation also promoted the expression and activation of MMP-9 time- dependently, but did not affect MMP-2 obviously. Additionally, β-arrestin 2 interacted with TRAF6 after MDP stim- ulation rapidly. Overexpression of β-arrestin2 inhibited NF-KB and MMP-9 activation and COX-2 upregulation in- duced by MDP, while silence of β-arrestin2 enhanced NOD2-triggered inflammatory signaling. Finally, Deletion of β-arrestin 2 markedly aggravated brain infarction, neurological deficit and inflammation induced by MDP in mice subjected to MCAO. Conclusion The results provide the first evidence that β-arrestin 2 is an essential negatively regulator of NOD2 triggered inflammatory signaling in the cerebral I/R injury. 展开更多
关键词 Β-ARRESTIN 2 NOD2 cerebral ischemia reperfusion MICROGLIA INNATE immunity inflammation.
在线阅读 下载PDF
Protective effect of active ingredient of Ferula sinkiangensis on global cerebral ischemia-reperfusion mice
5
作者 ZHANG Wen-qiang MI Yan +2 位作者 XU Ji-kai LI Ning HOU Yue 《中国药理学与毒理学杂志》 CAS 北大核心 2019年第9期735-735,共1页
OBJECTIVE Learning and memory impairment is one of the common sequelae of stroke patients,which is called"post-stroke dementia"and seriously affects the quality of life of the patients.For post-stroke dement... OBJECTIVE Learning and memory impairment is one of the common sequelae of stroke patients,which is called"post-stroke dementia"and seriously affects the quality of life of the patients.For post-stroke dementia,there is still no effective clinical treatment.In the present study,we aim to investigate the effect of the active ingredient of Ferula sinkiangensis,AW09,on global cerebral ischemia-reperfusion mice.METHODS The bilateral common carotid artery occlusion(BCCAO)reperfusion model was used to investigate the protective effect of AW09 on cognitive dysfunction in mice with global cerebral ischemia reperfusion.Y-maze and Morris water maze were used to test the learning and memory ability of mice.RESULTS Y-maze test showed that AW09 treatment significantly increased the spontaneous alternation rate of BCCAO model animals and had no significant effect on the total number of arm entries.The results of Morris water maze showed that AW09 significantly reduced the escape latency of BCCAO mice during the training period.During the probe test phase,AW09 significantly increased the swimming time in target quadrant,distance in target quadrant and number of platform crossings and decreased the swimming time in the quadrant opposite the target quadrant of BCCAO mice.CONCLUSION AW09,the active ingredient of Ferula sinkiangensis,can improve working memory impairment and spatial memory impairment in animals with global cerebral ischemia-reperfusion,suggesting that AW09 has poten⁃tial therapeutic value for cognitive dysfunction caused by global cerebral ischemia. 展开更多
关键词 Ferula sinkiangensis ischemia-reperfusion learning and memory.
在线阅读 下载PDF
Formononetin Enhances Autophagy Flux in The Penumbra of Cerebral Ischemia and Improves Nerve Damage
6
作者 GUO Tao ZUO Han-Jun +4 位作者 SHI Jin-Sha SHI Hao-Long WANG Zhao CHEN Bo-Lin Li Juan-Juan 《生物化学与生物物理进展》 SCIE CAS CSCD 北大核心 2024年第12期3253-3265,共13页
Objective Formononetin(FOR),a traditional Chinese medicine,has been widely used for nerve protection and nerve function rehabilitation after cerebral stroke.However,the role of FOR in autophagic lysosome function in c... Objective Formononetin(FOR),a traditional Chinese medicine,has been widely used for nerve protection and nerve function rehabilitation after cerebral stroke.However,the role of FOR in autophagic lysosome function in cerebral ischemiareperfusion damage has not been investigated.This study aimed to explore whether the therapeutic benefits of FOR were influenced by the regulation of autophagy flux.Methods Male Sprague-Dawley rats were separated into sham,model,and MCAO+FOR(30 mg/kg)groups after undergoing middle cerebral artery occlusion(MCAO)and ischemia-reperfusion(I/R).Then,the brain tissues in the ischemic penumbra were obtained to detect the proteins in autophagic/lysosomal pathway with antibodies of Beclin-1,LC3,SQSTM1/P62,Ubiquitin,LAMP-2,Cathepsin B(CTSB)and Cathepsin D(CTSD)by Western blot and immunofluorescence,respectively.Meanwhile,the therapeutic effectiveness was evaluated by measuring infarct volume,neurological impairments,and neuronal necrosis.Results The findings of this study demonstrate that FOR treatment exhibits a dual effect by enhancing the autophagic activities of Beclin-1 and LC3 in neurons,while simultaneously improving the autophagic clearance function,as evidenced by reinforced lysosomal activities of LAMP-2,CTSB,and CTSD,as well as reduced autophagic accumulation of Ubiquitin and P62 in the MCAO+FOR group compared to the MCAO group.Additionally,7 d of FOR treatment dramatically reduced neurological deficits,infarct volume,and neuronal death caused by cerebral ischemia.Conclusion These findings suggest that the neuroprotective mechanism of FOR therapy in accelerating recovery from ischemic stroke may involve the increase of autophagy flux in the penumbra. 展开更多
关键词 cerebral ischemia formononetin(FOR) autophagy flux PENUMBRA NEUROPROTECTION
在线阅读 下载PDF
Cardioprotective effects of Salvia miltiorrhiza Bunge and Lignum dalbergiae odoriferae on rat myocardial ischemia/reperfusion injury
7
《中国药理学通报》 CAS CSCD 北大核心 2015年第B11期168-169,共2页
Aim Salvia miltiorrhiza Bunge (SM) and lignum dalbergiae odoriferae (DO) are both traditional Chi- nese medicine that have cardioprotective effects. Here, we further examined the combined effects of SM and DO on r... Aim Salvia miltiorrhiza Bunge (SM) and lignum dalbergiae odoriferae (DO) are both traditional Chi- nese medicine that have cardioprotective effects. Here, we further examined the combined effects of SM and DO on rat myocardial ischemia/reperfusion injury. The possible mechanism of SM and DO also were elucidated. Methods DO was divided into aqueous extract of lignum dalbergiae odoriferae (DOW) and lignum dalbergiae odoriferae oil (DOO). Sprague-Dawley rats were randomized to seven groups: sham group, model group, treatment groups inclu- ding SM (10 g · kg^-1), DOW (5 g · kg^-1), DOO (0.5 ml · kg^-1), SM + DOW (10 g · kg^-1 + 5 g · kg^-1), SM + DOO ( 10 g · kg^-1 + 0. 5 ml · kg^-1). Rats were pretreated with homologous drug for 7 days and then subjec- ted to 30 rain of ischemia followed by 180 rain of reperfusion. Electrocardiogram (ECG) and heart rate were moni- tored and recorded continuously. At the end of reperfusion, blood samples were collected to determine the serum levels of creatine kinase-MB (CK-MB) and lactate dehydrogenase (LDH). Hearts were harvested to assess heart- body rate, infarct size and histopathological changes as well. Maximum and minimum effective points were deter- mined by measuring indicators associate with myocardial injury at different time-points of reperfusion (Smin, 15min, 30min, 45rain, 60min, 120min, 180min). The potential therapeutic mechanism of SM and SM + DOO were carried out by detecting superoxide dismutase (SOD), malondialdehyde (MDA), tumor necrosis factor-alpha (TNF-alpha) and interleukin 6 (IL-6). Results The results showed SM and DO can ameliorate cardiac function respectively, and this cardioprotective effect was further strengthened by their combinations. Among all the combi- nations, SM + DOO showed predominant potential to improve ECG and heart rate, reduce heart-body rate (28.5% + 1.4% , P 〈 0.01 vs model) and myocardial infarct size ( 20.96% + 1.61% , P 〈 0.01 vs model, P 〈 0.05 vs SM) , attenuate histopathological damage, decrease the levels of CK-MB and LDH (P 〈 0.01 vs model, P 〈 0.05 vs SM). The maximum effective points of SM and SM + DOO were 15min and 30rain respectively, and the minimum effective points of them were 180rain. In reducing serum level of MDA, TNF-alpha, IL-6 and increasing SOD activ- ity, SM + DOO was similar to SM. Conclusion The results of this study indicated that SM + DOO have combined effects that are highly effective than single pretreatment against myocardial ischemie reperfusion injury in rats. The possible mechanism of SM and DO were likely through its anti-oxidant and anti-inflammatory properties, and thus may be an effective and promising medicine for both prophylaxis and treatment of ischemic heart disease. 展开更多
关键词 Keywords:myocardialischemia/reperfusioninjury SalviamiltiorrhizaBunge Lignumdalbergiaeodoriferae the MYOCARDIAL ischemia/reperfusion INJURY SALVIA miltiorrhiza BUNGE Lignum dalbergiae odoriferae themaximum and minimum effective points ANTI-OXIDANT anti-inflammatory
在线阅读 下载PDF
Neuroprotective effects of kaempferol against 2VO-induced chronic cerebral ischemia in rats 被引量:4
8
作者 ZHANG Jun CHENG Xiao +5 位作者 YANG Huan YANG Yin-lin ZHAO Ting-kun WANG Qi WANG Yue-hua DU Guan-hua 《中国药理学与毒理学杂志》 CAS CSCD 北大核心 2016年第10期1028-1029,共2页
OBJECTIVE To investigate the effects of kaempferol(KAE)on chronic cerebral ischemia in rats.METHODS Chronic cerebral ischemia was induced in rats by permanent occlusion of bilateral common carotid arteries(2VO).Then,t... OBJECTIVE To investigate the effects of kaempferol(KAE)on chronic cerebral ischemia in rats.METHODS Chronic cerebral ischemia was induced in rats by permanent occlusion of bilateral common carotid arteries(2VO).Then,the rats with chronic cerebral ischemia were randomly divied into three groups:model group,KAE 10 and 30 mg·kg-1group.Another group rats without occlusion of common carotid arteries were used as the sham-operation group.Memory behavior was investigated by Morris water maze test.Prehensile ability was investigated by prehensile traction test.The structure of hippocampus and cortex neurons was observed with Nissel staining.In addition,the SOD activity and MDA content in brain tissue were determined.The DJ-1protein level was determined by Western blotting.RESULTS KAE 10 and 30 mg·kg-1could significantly improve cognitive impairment and prehensile traction ability(P<0.01)induced by chronic cerebral ischemia in rats.The results of the pathological analysis also suggested that KAE could ameliorate the pathological damage induced by chronic cerebral ischemia.In addition,KAE 30 mg·kg-1significantly increased the activity of SOD(P<0.05),but had no effect on the content of MDA in rat brain tissue.Western-blotting confirmed that KAE 10 and30 mg·kg-1could increase the expression of anti-oxidation proteins DJ-1 in hippocampus(P<0.01).CONCLUSION KAE may attenuate the chronic cerebral ischemic injury in rats. 展开更多
关键词 KAEMPFEROL chronic cerebral ischemia occlusion of bilateral common carotid arteries
在线阅读 下载PDF
Roles of berbamine in the normal and ischemia/reperfusion hearts
9
《中国药理学通报》 CAS CSCD 北大核心 2015年第B11期199-200,共2页
Myocardial infarction resulting from coronary atherosclerosis is the leading cause of death in modern soci- ety. Reperfusion is an essential treatment to salvage ischemia myocardium from necrosis, while it also leads ... Myocardial infarction resulting from coronary atherosclerosis is the leading cause of death in modern soci- ety. Reperfusion is an essential treatment to salvage ischemia myocardium from necrosis, while it also leads to addi- tional damage. Therefore, exploring effective medicines to protect the heart from post-ischemic injury is one of the major objectives of cardiovascular research. Berbamine is a nature compound of bisbenzylisochinoline alkaloids from Barberry. We found that it displays positive inotropic and lusitropic effects at lower concentrations by increasing myofilament Ca2+ sensitivity via a PKCe-dependent signaling pathway. Moreover, berbamine preconditioning con- fers cardioprotection against ischemia/reperfusion (I/R) injury by attenuating the Ca2+ overloading and preventing the calpain activation through the activating of PI3K-Akt-GSK3β pathway and subsequently opening of the mitoKATP channel. Furthermore, we demonstrate that berbamine postconditioning conferred the cardioprotective effect against I/R injury by the regulation of autophagy. These findings reveal new roles and mechanisms of berbamine in the heart and cardioprotection against I/R injury. 展开更多
关键词 MYOCARDIAL INFARCTION BERBAMINE POSTCONDITIONING AUTOPHAGY ischemia/reperfusion injury
在线阅读 下载PDF
Effects of total flavonoids of Rhododendra simsii on ameliorating brain injury via G protein-coupled SOCE pathway mediated by STIM and Orai in subacute phase of ischemia/reperfusion
10
作者 LU Jia-jun JIANG Chen-chen +5 位作者 HE Yu-xiang SHI Lei YIN Xiu-yun CHEN Zhuo CAO Di HAN Jun 《中国药理学与毒理学杂志》 CAS 北大核心 2021年第10期768-769,共2页
OBJECTIVE To explore the effect of total flavonoids of Rhododendra simsii(TFR)on improving cerebral ischemia/reperfusion injury(CIRI)and its relationship with STIM/Orai-regulated operational Ca^(2+)influx(SOCE)pathway... OBJECTIVE To explore the effect of total flavonoids of Rhododendra simsii(TFR)on improving cerebral ischemia/reperfusion injury(CIRI)and its relationship with STIM/Orai-regulated operational Ca^(2+)influx(SOCE)pathway.METHODS Oxygen-glucose deprivation/reoxygenation(OGD/R)PC12 cells were used to simulate CIRI in vitro,and the intracellular Ca^(2+)concentration and apoptosis rate of PC12 cells were detected by laser confocal microscope and flow cytometry,respectively.The regulation of STIM/Orai on SOCE was analyzed by STIM/Orai gene silencing and STIM/O rai gene overexpression.The CIRI model was established by MCAO in SD rats.The activities of inflammatory cytokines IL^(-1),IL-6 and TNF-αin serum were detected by ELISA.The pathological changes of ischemic brain tissue and the infarction of rat brain tissue were detected by HE staining and TTC staining.The protein and mRNA expression levels of STIM1,STIM2,Orai1,caspase-3 and PKB in brain tissue were detected by Western blotting and RT-qPCR,respectively.RESULTS The results of in vitro experiment showed that the fluorescence intensity of Ca^(2+)and apoptosis rate in PC12 cells treated with TFR were significantly lower than those in OGD/R group,and this trend was enhanced by SOCE antagonist 2-APB.STIM1/STIM2/Orai1 gene silencing significantly reduced apoptosis and Ca^(2+)overload in OGD/R model,while TFR combined with overexpression of STIM1/STIM2/Orai1 aggravated apoptosis and Ca2+overload.In the in vivo experiment,TFR significantly reduced the brain histopathological damage,infarction of brain tissue,the contents of IL^(-1),IL-6 and TNF-αin the serum in MCAO rats and down-regulated the expression of STIM1,STIM2,Orai1 and caspase-3 protein and mRNA in the brain tissue,and up-regulated the expression of PKB.The above effects were enhanced by the addition of 2-APB.CONCLUSION The above results indicate that TFR may reduce the contents of inflammatory factors and apoptosis,decrease Ca2+overload and ameliorate brain injury by inhibiting SOCE pathway mediated by STIM and Orai,suggesting that it has a protective effect against subacute CIRI. 展开更多
关键词 total flavonoids of Rhododendra simsii cerebral ischemia/reperfusion injury STIM/Orai store-operated calcium entry 2-APB
在线阅读 下载PDF
YiQiFuMai powder injection attenuates ischemia/reperfusion-induced myocardial apoptosis through AMPK activation
11
《中国药理学通报》 CAS CSCD 北大核心 2015年第B11期50-50,共1页
The YiQiFuMai powder injection ( YQFM), a Traditional Chinese Medicine (TCM) prescription re-de- veloped based on the well-known TCM formula Sheng-maisan, showed a wide range of pharmacological activities in ca... The YiQiFuMai powder injection ( YQFM), a Traditional Chinese Medicine (TCM) prescription re-de- veloped based on the well-known TCM formula Sheng-maisan, showed a wide range of pharmacological activities in cardiovascular diseases in clinic. However, its role in protection against myocardial ischemia/reperfusion (MI/R) injury has not been elucidated. The present study not only evaluated the eardioprotective effect of YQFM from MI/ R injury but also investigated the potential molecular mechanisms in vivo and in vitro. The mouse model of MI/R injury was induced by a transient vessel occlusion for 30 rain and reperfusion for 24 h. The myocardium infarct size, production of lactate dehydrogenase (LDH), creatine kinase (CK), TUNEL staining and easpase-3 activity were measured. AMPKeα and phospho-AMPKα was analyzed by Western blot. We further verified the protective effect and potential molecular mechanisms of YQFM in an in vitro model of simulated ischemia and reperfusion ( SI/ R) in H9c2 cardiomyocytes. Cell viability was determined, and cell apoptosis were measured by Hoechst 33342 staining and Flow cytometry. Mitochondrial membrane potential (△ψFm) was measured, and ATP content was quantified by biolumineseent assay. Expression of apoptosis-related proteins including Caspase-3, Bcl-2, Bax, AMPKα and phospho-AMPKα was analyzed by Western blot. AMPKoL siRNA transfection was also applied to the mechanism elucidation. YQFM significantly reduced myocardium infarct size and the production of LDH, CK in se- rum, and also produced a significant decrease of apoptotic index which was confirmed by TUNEL staining and the changes of caspase-3 activity. In addition, pretreatment with YQFM markedly improved cell viability and decreased LDH release. Moreover, YQFM inhibited H9c2 apoptosis, blocked the expression of easpase-3 and modulated Bcl- 2 and Bax proteins, leading to an increased mitochondrial membrane potential and cellular ATP content. Mechanis- tically, YQFM activated AMPK signaling pathways while pretreatment with AMPK inhibitor compound C and appli- cation of transfection with AMPKα siRNA attenuated the anti-apoptotie effect of YQFM. Our results indicated that YQFM could provide significant cardioproteetion against MI/R injury, and potential mechanisms might to suppres- sion of cardiomyocytes apoptosis at least in part through activating the AMPK signaling pathways. 展开更多
关键词 YiQiFuMai POWDER injection MYOCARDIAL ischemia/reperfusion apoptosis CARDIOPROTECTION AMPK
在线阅读 下载PDF
Study on potential mechanism of hyperoside on improving ischemia/reperfusion injury based on network pharmacology
12
作者 LU Jia-jun JIANG Chen-chen +2 位作者 SHI Lei CAO Di HAN Jun 《中国药理学与毒理学杂志》 CAS 北大核心 2021年第10期769-769,共1页
OBJECTIVE To predict the potential targets of hyperoside(Hyp)on improving ischemia/reperfusion injury by network pharmacology,and explore its possible mechanism combined with related literature.METHODS The action targ... OBJECTIVE To predict the potential targets of hyperoside(Hyp)on improving ischemia/reperfusion injury by network pharmacology,and explore its possible mechanism combined with related literature.METHODS The action targets of Hyp and ischemia/reperfusion injury were obtained by TCMSP,Swiss Target Prediction,Pharm Mapper,Similarity ensemble approach,Online Mendelian Inheritance in Man,DisGENT and database.The common targets of drugs and diseases were screened by Omishare and STRING database respectively,and the protein-protein interaction(PPI)network map was constructed.Then the interaction network between Hyp and disease targets was constructed by Cytoscape software and topological cross-linking analysis was carried out.Then the interaction network between Hyp and disease targets was constructed and cross-linked analysis was carried out by using Cytoscape software.The gene ontology(GO)of the core target was analyzed by David database,and then the related pathways of the core target were enriched by KEGG database.RESULTS A total of 54 GO enrichment processes were obtained by GO enrichment analysis of 44 common genes,including 38 biological processes(BP),15 cell composition(CC)processes,and 1 molecular functional(MF)process.43 items were obtained by signal pathway enrichment analysis in KEGG database.CONCLUSION It is suggested that the mechanism of Hyp may be related to PI3K-Akt,RAP1,RAS,VEGF and other signal transduction pathways.The above results laid a theoretical foundation for the study of the mechanism and clinical application of the treatment of ischemia/reperfusion injury. 展开更多
关键词 HYPEROSIDE ischemia/reperfusion injury network pharmacology
在线阅读 下载PDF
Progress in protective effect and mechanism of 6-gingerol on myocardial ischemia/reperfusion injury
13
作者 MA Yun-feng PAN Fei-bing +1 位作者 ZHANG Dan-shen JING Yong-shuai 《中国药理学与毒理学杂志》 CAS 北大核心 2021年第10期769-770,共2页
The morbidity and mortality of cardiovascular diseases are very high,which has attracted more and more attention all over the world.Common treatment methods for clinical treatment of acute myocardial infarction includ... The morbidity and mortality of cardiovascular diseases are very high,which has attracted more and more attention all over the world.Common treatment methods for clinical treatment of acute myocardial infarction include direct percutaneous coronary intervention and coronary artery bypass grafting,which can quickly restore blocked coronary blood flow and reduce the infarct size.However,the inevitable ischemia/reperfusion injury will occur during the recovery of coronary blood flow,its pathological mechanism is complicated,and the Western medicine countermeasures are very limited.Among the current drugs for the treatment of cardiovascular diseases,traditional Chinese medicine has become a research hotspot due to its multiple targets,safety,and low side effects.Ginger is the fresh rhizome of Zingiber officinale Rosc.,a perennial herbaceous plant in the ginger family.It is a dual-purpose resource of medicine and food.Ginger has the functions of relieving the appearance and dispelling cold,warming up and relieving vomiting,resolving phlegm and relieving cough,and relieving fish and crab poison.The chemical components of ginger mainly include volatile oil,gingerol,diphenylheptane,etc..Among them,6-gingerol,as the main active component of gingerols,has obvious pharmacological effects in myocardial protection,anti-oxidation,anti-inflammatory,etc..Studies have shown that 6-gingerol protects myocardium mainly through anti-oxidative stress,anti-inflammatory,inhibiting cell apoptosis,and preventing calcium influx.①Anti-oxidative stress:oxidative stress is a state where oxidation and anti-oxidation in the body are out of balance,and it is also an important factor leading to myocardial damage.Many studies have confirmed that 6-gingerol has an antioxidant effect,and it is considered a natural antioxidant.6-gingerol can significantly reduce the degree of oxidative stress and the level of reactive oxygen species caused by cardiomyocyte damage,and has a significant cardioprotective effect.②Anti-inflammatory:inflammation can cause substantial cell damage and organ dysfunction,which is another important cause of myocardial damage.6-gingerol can reduce the levels of inflammatory factors such as interleukin-6,interleukin-1β,and tumor necrosis factor-αin cardiomyocytes,and at the same time inhibit the TLR4/NF-κB signaling pathway,an important regulatory pathway of inflammation,showing that it may improve myocardial damage through anti-inflammatory effects.③Inhibition of apoptosis:apoptosis is a complex and orderly process in the autonomous biochemical process of cells,and one of the main mechanisms of myocardial injury.This process can be roughly divided into three pathways:mitochondria,endoplasmic reticulum,and death receptors.Among them,the mitochondrial pathway plays an important role,and Bcl-2 and Bax located upstream of this pathway can regulate the entire process of cell apoptosis by regulating the permeability of the mitochondrial membrane.Studies have found that the preventive application of 6-gingerol can reduce cell damage,reduce the number of apoptotic cells,reduce the activity of Bax and caspase-3,and increase the expression of Bcl-2.Therefore,6-gingerol pretreatment can reduce the damage of cardiomyocytes,and its mechanism may be related to the inhibition of apoptosis.④Prevent calcium influx:calcium overload is involved in the pathogenesis of myocardial ischemic injury,which may be related to excessive contracture,arrhythmia,and mitochondrial Ca2+accumulation that impairs myocardial function.6-gingerol inhibits the increase of intracellular Ca2+concentration by inhibiting L-type calcium current,thereby reducing extracellular Ca2+influx,thereby avoiding calcium overload and playing a cardioprotective effect.In summary,6-gingerol can effectively treat and improve myocardial ischemia/reperfusion injury,and it has great development potential in the fields of medicine and health products. 展开更多
关键词 6-GINGEROL myocardial ischemia/reperfusion injury
在线阅读 下载PDF
Chemokines play complex roles in cerebral ischemia 被引量:10
14
作者 CHEN Chen CHU Shi-feng +4 位作者 LIU Dan-dan ZHANG Zhao KONG Ling-lei ZHOU Xin CHEN Nai-hong 《中国药理学与毒理学杂志》 CAS CSCD 北大核心 2018年第9期672-673,共2页
Ischemic stroke(IS) is a disease caused by deficiency of blood and oxygen in focal or complete brain,followed by inflammation cascade and other pathological reactions,which finally lead to irreversible damage to the c... Ischemic stroke(IS) is a disease caused by deficiency of blood and oxygen in focal or complete brain,followed by inflammation cascade and other pathological reactions,which finally lead to irreversible damage to the cerebrum.For the inflammation is a key progress at the initiation of ischemia and poststroke,and chemokines work as vital cytokines in inflammation,we focus the roles of chemokines in IS.Studies have shown cerebral ischemia is associated with marked induction of both CXC and CC chemokines which resulting in extensive leukocyte infiltration in the ischemic brain,and neutrophil infiltration may increase cerebral edema inducing injury in the ischemic area.In addition,chemokines also shows other functions such as promote neuroblast migration,hematogenous cell recruitment and functional brain repair.Thus,a similar chemokine ligand/chemokine receptor pair can mediate both beneficial and detrimental effects depending on the window of observation and pathophysiological conditions.This manuscript reviews the studies about chemokine-mediated effects in cerebral ischemia/reperfusion and discusses the potential significance of these interactions in injury and repair of ischemic tissues.We also refer drug development based on the chemokines and clinical applications using chemokines as diagnostic or prognostic biomarkers in ischemic stroke. 展开更多
关键词 CHEMOKINE cerebral ischemia ISCHEMIC stroke
在线阅读 下载PDF
Inhibition of chemokine-like factor 1 improves bloodbrain barrier dysfunction in rats following focal cerebral ischemia 被引量:10
15
作者 KONG Ling-lei HU Jin-feng +2 位作者 YUAN Yu-he CHEN Nai-hong DU Guan-hua 《中国药理学与毒理学杂志》 CAS CSCD 北大核心 2016年第10期1024-1025,共2页
OBJECTIVE To investigate the role of chemokine-like factor 1(CKLF1),a novel C-C chemokine,on brain-blood barrier(BBB)integrity in rat focal cerebral ischemia and reperfusion model.METHODS Antibodies against CKLF1 was ... OBJECTIVE To investigate the role of chemokine-like factor 1(CKLF1),a novel C-C chemokine,on brain-blood barrier(BBB)integrity in rat focal cerebral ischemia and reperfusion model.METHODS Antibodies against CKLF1 was applied to the rightcerebral ventricle immediately after transient middle cerebral artery occlusion.Brain water content,Evans blue leakage and the expression of aquaporin-4(AQP-4),matrix metalloproteinase-9(MMP-9),zonula occludens-1(ZO-1)and occludin were measured.RESULTS After treatment with antiCKLF1 antibody,brain water content and Evans blue leakage in ipsilateral hemisphere were decreased in a dose-dependent manner at 24 h after reperfusion,but not changed in contralateral hemisphere.Anti-CKLF1 antibody reduced the expression of AQP-4 and MMP-9,and upregulated the expression of ZO-1 and Occludin.These results suggest that CKLF1 is involved in BBB disruption after reperfusion.CONCLUSION Inhibition of CKLF1 protects against cerebral ischemia by maintaining BBB integrity,possibly via inhibiting the expression of AQP-4 and MMP-9,and increasing the expression of tight junction protein. 展开更多
关键词 chemokine-like factor 1 cerebral ischemia brain-blood barrier
在线阅读 下载PDF
SOX2/DRD2 signaling pathway facilitates astrocytic dedifferentiation in cerebral ischemic mice
16
作者 YI Xuyang KANG Enming +4 位作者 WANG Yanjin ZHANG Kun LIN Wei WU Shengxi WANG Yazhou 《神经解剖学杂志》 CAS CSCD 北大核心 2024年第3期277-286,共10页
Objective:To explore the effects of dopamine receptor D2(DRD2)on astrocytic dedifferentiation based on SOX2-regulated genes in neural stem cells(NSCs)and astrocytes.Methods:Immunofluorescence staining and SOX2-GFP mic... Objective:To explore the effects of dopamine receptor D2(DRD2)on astrocytic dedifferentiation based on SOX2-regulated genes in neural stem cells(NSCs)and astrocytes.Methods:Immunofluorescence staining and SOX2-GFP mice were used to examine the lineage differentiation of SOX2-positive cells during the development of cerebral cortex.Primary NSCs/astrocytes culture,ChIP-seq and Western Blot were adopted to analyze and verify the expression of candidate genes.Pharmacological manipulation,neurosphere formation,photochemical ischemia,immunofluorescence staining and behavior tests were adopted to evaluate the effects of activating DRD2 signaling on astrocytic dedifferentiation.Results:Immunofluorescence staining demonstrated the NSC-astrocyte switch of SOX2-expression in the normal development of cerebral cortex.ChIP-seq revealed enrichment of DRD2 signaling by SOX2-bound enhancers in NSCs and SOX2-bound promoters in astrocytes.Western Blot and immunofluorescence staining verified the expression of DRD2 in NSCs and reactive astrocytes.Application of quinagolide hydrocholoride(QH),an agonist of DRD2,significantly promoted astrocytic dedifferentiation both in vitro and in vivo following ischemia.In addition,quinagolide hydrocholoride treatment improved locomotion recovery.Conclusion:Activating DRD2 signaling facilitates astrocytic dedifferentiation and may be used to treat ischemic stroke. 展开更多
关键词 cerebral ischemia ASTROCYTE DEDIFFERENTIATION SOX2 dopamine D2 receptor(DRD2) mouse
在线阅读 下载PDF
Epac1/Rap1 signaling pathway is involved in the pathogenesis of myocardial ischemia/reperfusion injury in rats 被引量:1
17
作者 Xin WANG Xia CHE +2 位作者 Qin JIANG Gong-liang ZHANG Liu-yi DONG 《中国药理学与毒理学杂志》 CAS CSCD 北大核心 2018年第4期309-310,共2页
OBJECTIVE In this study we explored the role of Epac1-Rap1 pathway in the acute myocardial ischemia/reperfusion injury(MIRI) in vitro and in vivo.METHODS An acute myocardial ischemia/reperfusion injury model was estab... OBJECTIVE In this study we explored the role of Epac1-Rap1 pathway in the acute myocardial ischemia/reperfusion injury(MIRI) in vitro and in vivo.METHODS An acute myocardial ischemia/reperfusion injury model was established by the ligation of left anterior descending coronary.Myocardial architecture,fibers and apoptosis was evaluated by the Masson trichrome staining,Sirius red staining and TUNEL assay.H9c2 cells were subjected to hypoxia for 5 h followed by 1-h reoxygen.ation in vitro.Cell viability was measured by MTT assay and cellular injury was evaluated by measuring the release of lactate dehydrogenase(LDH).Western blot,real-time PCR and immunofluorescence were used to detect the expressions of Epac1 and relative downstream molecules.RESULTS Myocardial IR-induced cardiac apoptosis and accumulation of Epac1 and Rap1 in rat IR injury model.Direct Epac activation by 8-CPT(8-(4-chlorophenylthio)-2′-O-methyl-cAMP) exacerbated cardiomyocyte death and dysfunction following hypoxia-reoxygenation(H/R),selective activation of Epac in response to H/R was evident which enriched for cytosolic/membrane proteins and mRNA.Harmacological inhibitor of Epac(ESI-09) significantly ameliorated myocardial injury with the decline of Epac expression.Epac inhibitor and agonist studies also implicated the effect of Rap1,which is downstream of Epac in this pathway.The expression of Rap1 elevated when activated by Epac agonist and was blocked by Epac inhibitor.The same result was true for myocyte CaMK-II and intracellular calcium ions activation.Moreover,ESI-09 also increased ERK1/2 phosphorylation.CONCLUSION Our study reveal that Epac1/Rap1 signaling pathway is involved in the pathogenesis of myocardial I/R injury in rats,which provides evidence on the development of therapeutic strategies target this pathway for myocardial I/R injury. 展开更多
关键词 急性心肌缺血 冠状动脉 治疗方法 临床分析
在线阅读 下载PDF
Neuroprotective effect of luteolin-7-O-β-D-glucuronide in a rat model offocal cerebral ischemia 被引量:1
18
作者 Sheng-qun HOU Jia-ying YE +5 位作者 Hai-feng ZHANG Li-hui LU Xian-chu HAN Ming-ming LIU Ting LI Fang WANG 《中国药理学与毒理学杂志》 CAS CSCD 北大核心 2018年第4期268-269,共2页
OBJECTIVE To investigate the neuroprotective effect and possible mechanisms of lute.olin-7-O-β-D-glucuronide(LGU) against focalcerebral ischemic injury.METHODS The focal cerebral ischemic injury model was established... OBJECTIVE To investigate the neuroprotective effect and possible mechanisms of lute.olin-7-O-β-D-glucuronide(LGU) against focalcerebral ischemic injury.METHODS The focal cerebral ischemic injury model was established by middle cerebral artery occlusion(MCAO).Male Sprague Dawley rats were randomly divided into sham group,model group(MCAO),LGU group(0.24,0.72 and2.16 mg·kg^(-1)) and positive control group(Edaravone at 5 mg·kg^(-1)).LGU was injected intravenously 30 min after MCAO.Neurological severity score,infarct volume and brain water content were detected 24 h after MCAO and the levels of Na+-K+ ATPase,Ca2 + ATPase,TNF-α and IL-1β were detected to explore the possible mechanisms.For the therapeutic time window test,LGU(0.72 mg·kg^(-1)) was injected intrave.nously 0.5,2,4,6,8,10 and 12 h respectively after MCAO.To evaluate motion behavior,LGU were injected intravenously 30 min after MCAO and once per day during detection period.The changes of motor coordination were detected by rotating rod method and grip strength analysis,and the changes of gaits were detected using DigiGait Imaging System.RESULTS LGU improved the neurological severity score,infarct volume ratio and brain water content.The therapeutic time window of LGU for cerebral infarction and brain edema was at least 6 h and for neurological dysfunction was 12 h.LGU also prolonged the latency on rotarod,increased the forelimb tension and improved 8 gait parameters,including stance duration,stride length,stance width,paw area,paw area variability,gait symmetry,ataxia coefficient and tau propulsion.Furthermore,LGU increased Na^+-K^+-ATPase and Ca^(2+)-ATPase levels in the cortex and hippocampus in the ischemic side,reduced the levels of TNF-α and IL-1β in the serum.CONCLUSION LGU has a significant neuroprotective effect against cerebral ischemic injury via improving energy metabolism and reducing inflammation. 展开更多
关键词 缺氧缺血性脑损伤 脑动脉 治疗方法 临床分析
在线阅读 下载PDF
DHEA-neuroprotection and -neurotoxicity after transient cerebral ischemia in rats 被引量:4
19
作者 Li, Z. Cui, S. Z. +4 位作者 Zhang, Z. Zhou, R. Ge, Y. B. Sokabe, M. Chen, L. 《南京医科大学学报(自然科学版)》 CAS CSCD 北大核心 2009年第4期511-511,共1页
关键词 DHEA 肿瘤 临床 研究
在线阅读 下载PDF
Analysis of potential amino acid biomarkers in brain tissue and the effect of galangin on cerebral ischemia
20
作者 JianGAO ChangCHEN +2 位作者 Fei-pengDUAN JingFANG Shao-jingLI 《中国药理学与毒理学杂志》 CAS CSCD 北大核心 2015年第S1期46-47,共2页
OBJECTIVE Galangin,apotent scavenger of free radicals,is used as herbal medicine for various ailments for centuries in Asia.With complex pathophysiology,ischemic stroke is one of the most frequent causes of death and ... OBJECTIVE Galangin,apotent scavenger of free radicals,is used as herbal medicine for various ailments for centuries in Asia.With complex pathophysiology,ischemic stroke is one of the most frequent causes of death and disability worldwide.We have reported that galangin provides a direct protection against ischemic injury as a potential neuroprotective agent and has potential therapeutic effects on the changes of serum amino acids for ischemic stroke;however,its mechanism on changes of amino acids in the ischemic brain tissue has not yet been clarified.METHODS In this paper,we explored the amino acid biomarkers of brain tissue in the acute phase of cerebral ischemia and the effect of galangin on those potential biomarkers with a rapid,sensitive and accurate methodology of simultaneous quantification of 12 AAs in rat brain tissue by the RRLC/QQQ.RESULTS we identified that glutamic acid,alanine and aspartic acid all showed significant change in galangin-treated groups compared to vehicle-treated rats and four pathway-related enzymes were identified by multiplex interactions with the three amino acids.With metabolite-protein network analysis and molecule docking,six of 28 proteins were identified and may become the potential biomarkers of galangin for acute ischemic stroke.CONCLUSION All data in our study provide thought for exploring the mechanism of disease,discovering new targets for drug candidates and elucidating the related regulatory signal network. 展开更多
关键词 GALANGIN AMINO acid biomarkers cerebral ischemia b
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部