Carbon nanotubes(CNTs)supported CoB and CoBSn catalysts were synthesized for hydrogen production via NaBH4 hydrolysis.The roles of Sn-promoter and the effect of CNTs treatment on CoB catalysts were evaluated and discu...Carbon nanotubes(CNTs)supported CoB and CoBSn catalysts were synthesized for hydrogen production via NaBH4 hydrolysis.The roles of Sn-promoter and the effect of CNTs treatment on CoB catalysts were evaluated and discussed.It is found that after the addition of Sn promoter,the specific surface area and the generation of active CoB phase are increased,while the oxidation treatment of CNTs results in more loading amounts of active components and enrichment of electron at active sites as well as large surface area.Consequently,the Sn-doped CoB catalysts supported on CNTs with oxidation treatment exhibits a significantly improved activity with a high H_(2)generation rate of 2640 mL/(min·g).Meanwhile,this catalyst shows a low activation energy of 43.7 kJ/mol and relatively high reusability.展开更多
Cotton,a crucial commercial fibre crop,depends heavily on seed-associated characteristics like germination rate,vigour,and resistance to post-harvest deterioration for both production and lint quality.Serious cellular...Cotton,a crucial commercial fibre crop,depends heavily on seed-associated characteristics like germination rate,vigour,and resistance to post-harvest deterioration for both production and lint quality.Serious cellular damage dur-ing post-harvest processes such as delinting,prolonged seedling emergence periods,decreased viability,increased susceptibility to infections,and lipid peroxidation during storage pose serious problems to seed quality.The perfor-mance of seeds and total crop productivity are adversely affected by these problems.Traditional methods of seed improvement,like physical scarification and seed priming,have demonstrated promise in raising cotton seed vigour and germination rates.Furthermore,modern approaches including plasma therapies,magnetic water treatments,and nanotechnology-based treatments have shown promise in improving seed quality and reducing environmen-tal stresses.By offering sustainable substitutes for conventional approaches,these cutting-edge procedures lessen the need for fungicides and other agrochemicals that pollute the environment.This review explores various con-ventional and emerging strategies to address the detrimental factors impacting cotton seed quality.It emphasizes the importance of integrating classical and advanced approaches to enhance germination,ensure robust crop estab-lishment,and achieve higher yields.In addition to promoting sustainable cotton production,this kind of integration helps preserve the ecosystem and create resilient farming methods.展开更多
The pronounced anisotropy in mechanical properties presents a major obstacle to the extensive application of aluminum-lithium(Al-Li)alloys,primarily attributed to heterogeneous precipitate distribution,grain structure...The pronounced anisotropy in mechanical properties presents a major obstacle to the extensive application of aluminum-lithium(Al-Li)alloys,primarily attributed to heterogeneous precipitate distribution,grain structure variations,and crystallographic texture.This study investigates the impact of pre-thermal treatment prior to hot rolling and aging treatment on the anisotropy of mechanical properties of 2195 alloy sheet fabricated by gas atomization,hot pressing and hot rolling.The results demonstrate that pre-treatment at 450℃for 4 h promotes finer and more uniform distribution of precipitates,effectively mitigating mechanical anisotropy of the alloy sheet.Additionally,this treatment facilitates recrystallization during hot rolling,further reducing mechanical anisotropy.The in-plane anisotropy(IPA)factors for ultimate tensile strength(UTS)and yield strength(YS)are 1.15%and 0.77%,respectively.Subsequent aging treatment enhances grain refinement and the uniformity of the T_(1) phase,suppresses the formation of precipitation-free zones(PFZs),significantly improving the strength and toughness of the alloy sheet.After peak aging at 165℃for 48 h,the alloy sheet exhibits YS of 547 MPa,UTS of 590 MPa,and elongation(EL)of 7.7%.展开更多
Kang et al.published a research article on the treatment of ischemic stroke using engineered Treg cells(Kang et al.,Prog Biochem Biophys,2025,52(4):946-956.DOI:10.16476/j.pibb.2025.0019).Their study mainly explores th...Kang et al.published a research article on the treatment of ischemic stroke using engineered Treg cells(Kang et al.,Prog Biochem Biophys,2025,52(4):946-956.DOI:10.16476/j.pibb.2025.0019).Their study mainly explores the immunoregulatory role of regulatory T(Treg)cells in ischemic stroke,providing an innovative therapeutic strategy.Neuroinflammation is a major driver of secondary injury after stroke.Existing treatments focus on vascular recanalization while neglecting immune regulation.Their study proposes to modulate neuroinflammation through in vitro-induced Treg cells,offering a novel approach distinct from traditional thrombolysis and endovascular interventions.展开更多
In this study,samples obtained from 1.3343 high-speed steel punches with TiN coatings were tested.The samples were subjected to heat treatment at different cryogenic temperatures(<196℃)and durations(12,24 and 36 h...In this study,samples obtained from 1.3343 high-speed steel punches with TiN coatings were tested.The samples were subjected to heat treatment at different cryogenic temperatures(<196℃)and durations(12,24 and 36 h),followed by tempering at two different temperatures(200,500℃).For performance testing,a ball-on-disk wear test setup was utilized and a total of 6 groups of samples were examined.The effects of cryo-treatment and tempering on microstructure were revealed through microstructural analysis with scanning electron microscopy(SEM),X-ray(XRD diffraction),and Rietveld analysis.Additionally,the hardness of the punches was measured with microhardness measurements.The optimal wear resistance was observed in the 36 h deep cryo-treated and 200℃tempered samples.The characterization study indicates that by cryogenic treatment a significant portion of the retained austenite transformed into martensite and secondary carbides formed,resulting in improved wear resistance and a slight increase in hardness.展开更多
In the present study,the mechanical and ballistic properties of friction stir welded(FSW)aluminum alloy(AA5754)samples were investigated,both untreated and cryogenically treated,when impacted by a 7.62 mm armour-pierc...In the present study,the mechanical and ballistic properties of friction stir welded(FSW)aluminum alloy(AA5754)samples were investigated,both untreated and cryogenically treated,when impacted by a 7.62 mm armour-piercing(AP)bullet at an impact velocity of 682±20 m/s.The FSW technique was used to prepare the welded samples for AA5754,with an axial force of 7 kN,a feed rate of 20 mm/min,and a speed of 1200 rpm.The cryogenic treatments performed after welding,including deep cryogenic treatment(DCT)at196℃ and shallow cryogenic treatment(SCT)at80℃,for 6 and 72 h,respectively.The microstructure and mechanical characteristics of cryogenically treated and untreated joints were examined.The cryogenic treatment refined the grain size(1.05 μm)and enhanced the microhardness(93 Hv).Moreover,DCT-FSW significantly improved the tensile strength(13.93%)and impact strength(8.45%)compared to untreated FSW sample.Additionally,in untreated FSW samples,the fracture behaviour varied:the impact fracture mode primarily exhibited ductile failure,while the tensile fracture exhibited a mixed fracture mode.In contrast,the tensile and impact fracture modes of the DCT-FSWwere dominated by a ductile failure mode.The DCT-FSW target demonstrated a lower depth of penetration(DOP)of 31 mm compared to the SCT-FSWand untreated FSW targets.Post-ballistic SEM analysis in the crater region of all three zones revealed the formation of frictional grooves,small cracks,and adiabatic shear bands(ASBs).展开更多
Carbonized melamine foam has been recognized as a promising material for microwave absorption due to its exceptional thermal stability,lightweight,and remarkable dielectric properties.In this study,we investigated the...Carbonized melamine foam has been recognized as a promising material for microwave absorption due to its exceptional thermal stability,lightweight,and remarkable dielectric properties.In this study,we investigated the impact of nitric acid oxidation on the surface of carbonized melamine foam and its microwave absorption properties.The treated foam exhibits optimal reflection loss of−21.51 dB at 13.20 GHz,with an effective absorption bandwidth of 7.04 GHz.The enhanced absorption properties are primarily attributed to the strengthened dielectric loss,improved impedance matching,and increased polarization losses resulting from the oxidized surfaces.This research demonstrates a promising new approach for research into surface treatments to improve the performances of microwave absorbers.展开更多
In this paper,equal channel angular pressing and thermomechanical treatment was employed to improve the strength and electrical conductivity of an aging strengthened Cu-Ti-Cr-Mg alloy,and the microstructure and proper...In this paper,equal channel angular pressing and thermomechanical treatment was employed to improve the strength and electrical conductivity of an aging strengthened Cu-Ti-Cr-Mg alloy,and the microstructure and properties of the alloy were investigated in detail.The results showed that the samples deformed by the combination of cryogenic equal channel angular pressing(ECAP)and rolling had good comprehensive properties after aging at 400℃.The tensile strength of the peak-aged and over-aged samples was 1120 MPa and 940 MPa,with their corresponding electrical conductivity of 14.7%IACS and 22.1%IACS,respectively.ECAP and cryogenic rolling introduced high density dislocations,leading to the inhibition of the softening effects and refinement of the grains.After a long time aging at 400℃,the alloy exhibited ultra-high strength with obvious increasing electrical conductivity.The high strength was attributed to the synergistic effect of work hardening,grain refinement strengthening and precipitation strengthening.The precipitation of a large amount of Ti atoms from the matrix led to the high electrical conductivity of the over-aged sample.展开更多
The purpose of this paper is to examine the effect of processing parameters and subsequent heat treatments on the microstructures and bonding strengths of Ti-6Al-4V/AA1050 laminations formed via a non-equal channel la...The purpose of this paper is to examine the effect of processing parameters and subsequent heat treatments on the microstructures and bonding strengths of Ti-6Al-4V/AA1050 laminations formed via a non-equal channel lateral co-extrusion process.The microstructural evolution and growth mechanism in the diffusion layer were discussed further to optimize the bonding quality by appropriately adjusting process parameters.Scanning electron microscopes(SEM),energy dispersive spectrometer(EDS),and X-ray diffraction(XRD)were used to characterize interfacial diffusion layers.The shear test was used to determine the mechanical properties of the interfacial diffusion layer.The experimental results indicate that it is possible to co-extrusion Ti-6Al-4V/AA1050 compound profiles using non-equal channel lateral co-extrusion.Different heat treatment processes affect the thickness of the diffusion layer.When the temperature and time of heat treatment increase,the thickness of the reaction layers increases dramatically.Additionally,the shear strength of the Ti-6Al-4V/AA1050 composite interface is proportional to the diffusion layer thickness.It is observed that a medium interface thickness results in superior mechanical performance when compared to neither a greater nor a lesser interface thickness.Microstructural characterization of all heat treatments reveals that the only intermetallic compound observed in the diffusion layers is TiAl_(3).Due to the inter-diffusion of Ti and Al atoms,the TiAl_(3) layer grows primarily at AA1050/TiAl_(3) interfaces.展开更多
Wire-arc additive manufacture(WAAM)has great potential for manufacturing of Al-Cu components.However,inferior mechanical properties of WAAM deposited material restrict its industrial application.Inter-layer cold rolli...Wire-arc additive manufacture(WAAM)has great potential for manufacturing of Al-Cu components.However,inferior mechanical properties of WAAM deposited material restrict its industrial application.Inter-layer cold rolling and thermo-mechanical heat treatment(T8)with pre-stretching deformation between solution and aging treatment were adopted in this study.Their effects on hardness,mechanical properties and microstructure were analyzed and compared to the conventional heat treatment(T6).The results show that cold rolling increases the hardness and strengths,which further increase with T8 treatment.The ultimate tensile strength(UTS)of 513 MPa and yield stress(YS)of 413 MPa can be obtained in the inter-layer cold-rolled sample with T8 treatment,which is much higher than that in the as-deposited samples.The cold-rolled samples show higher elongation than that of as-deposited ones due to significant elimination of porosity in cold rolling;while both the T6 and T8 treatments decrease the elongation.The cold rolling and pre-stretching deformation both contribute to the formation of dense and dispersive precipitatedθ′phases,which inhibits the dislocation movement and enhances the strengths;as a result,T8 treatment shows better strengthening effect than the T6 treatment.The strengthening mechanism was analyzed and it was mainly related to work hardening and precipitation strengthening.展开更多
[Background]The previous studies suggest that radioactive elements like Cs and Sr may adversely affect marine ecosystems and the fishing industry.Traditional treatment systems for radioactive wastewater like the Advan...[Background]The previous studies suggest that radioactive elements like Cs and Sr may adversely affect marine ecosystems and the fishing industry.Traditional treatment systems for radioactive wastewater like the Advanced Liquid Processing System(ALPS)and Kurion have faced challenges in limiting concentration and achieving safety criteria.Studies suggest potential long-term impacts on benthic organisms and seafood networks due to radioactive elements like Cs and Sr from the discharged radioactive wastewater,which may hinder post-disaster recovery and provoke economic losses in the fishing industry both domestically and internationally.A series of studies indicate that there are issues of Cs and Sr pollution migration in soil and water conservation in Fukushima.[Methods]To provide feasible solutions,the main article includes five nuclear wastewater treatment technologies,and soil and water conservation measures for different media(water and soil)were evaluated through reviewing the previous fifteen years'articles.To provide feasible solutions,the main articles,the phytoextraction technologies in Cs and Sr treatment within different land use areas were wildly analyzed(Camellia japonica,Arabidopsis halleri and other local species).[Results]1)A 99.9%removal rate for Cs^(+)and 99.5%for Sr^(2+)was achieved by the KFe[Fe(CN)_(6)]and BaSO_(4)co-precipitation method.2)For membrane filtration,Sr^(2+)and Cs^(+)were removed using metal-organic framework(MOF/graphene oxide)and ion exchange techniques using inorganic materials like titanosilicates.The absorption efficiency of membrane filtration for Sr^(2+)and Cs^(+)was at least 92%and 94%,respectively.The study analyzed soil and water conservation technologies in different land uses,river basins and catchments.3)The underground water treatment mainly were completed via the membrance technologies like reverse osmosis and Permeable Reactive Barriers(PRB)technologies.The ^(90) Sr concentration decreased 77%-91%compared to the initial concentration by PRB technology.These diverse methods offered effective strategies for radioactive wastewater treatment,especially the co-precipitation method may be feasible remediation measures to ensure ecological safety surrounding nuclear power utilizing areas.Soil and water conservation measures for soil pollution treatment mainly focused on the use of stabilizers to hinder the migration of Cs and Sr in the soil and the effects of wind erosion such as interpolyelectrolyte complexes.[Conclusions]We evaluated the pollution of Cs and Sr in the Fukushima nuclear radiation soil and water to provide solutions for the treatment of nuclear wastewater and to prevent radionuclide pollutants from migrating into the soil and water.展开更多
Objective To evaluate the efficacy of medroxyprogesterone acetate(MA)plus metformin as the primary fertility-sparing treatment for atypical endometrial hyperplasia(AEH)and early-stage grade 1 endometrial adenocarcinom...Objective To evaluate the efficacy of medroxyprogesterone acetate(MA)plus metformin as the primary fertility-sparing treatment for atypical endometrial hyperplasia(AEH)and early-stage grade 1 endometrial adenocarcinoma(G1 EAC)and the recurrence rate after treatment.Methods Sixty patients(aged 20-42 years)with AEH and/or grade 1 EAC limited to the endometrium were enrolled prospectively and randomized into two groups(n=30)to receive oral MA treatment at the daily dose of 160 mg(control)or MA plus oral metformin(850 mg,twice a day)for at least 6 months.The treatment could extend to 12 months until a complete response(CR)was achieved,and follow-up hysteroscopy and curettage were performed every 3 months.For all the patients who achieved CR,endometrial expressions of IGFBP-rP1,p-Akt and p-AMPK were detected immunohistochemically.Results A total of 58 patients completed the treatment.After 9 months of treatment,23(76.7%)patients in the combined treatment group and 20(71.4%)in the control group achieved CR;two patients in the control group achieved CR after converting to the combined treatment.The recurrence rate did not differ significantly between the control group and combined treatment group(30.0%vs 22.7%,P>0.05).Ten(35.7%)patients in the control group experienced significant weight gain of 5.7±6.1 kg,while none of the patients receiving the combined treatment exhibited significant body weight changes.Compared with the control group,the patients receiving the combined treatment showed enhanced endometrial expressions of IGFBP-rP1 and p-AMPK with lowered p-Akt expression.Conclusion Metformin combined with MA may provide an effective option for fertility-sparing treatment of AEH and grade 1 stage IA EAC,and the clinical benefits of metformin for controlling MA-induced weight gain and promoting endometrial expressions of IGFBP-rP1 and p-AMPK while inhibiting p-Akt expression warrants further study.展开更多
Cadmium sulfide(CdS)is an n-type semiconductor with excellent electrical conductivity that is widely used as an electron transport material(ETM)in solar cells.At present,numerous methods for preparing CdS thin films h...Cadmium sulfide(CdS)is an n-type semiconductor with excellent electrical conductivity that is widely used as an electron transport material(ETM)in solar cells.At present,numerous methods for preparing CdS thin films have emerged,among which magnetron sputtering(MS)is one of the most commonly used vacuum techniques.For this type of technique,the substrate temperature is one of the key deposition parameters that affects the interfacial properties between the target film and substrate,determining the specific growth habits of the films.Herein,the effect of substrate temperature on the microstructure and electrical properties of magnetron-sputtered CdS(MS-CdS)films was studied and applied for the first time in hydrothermally deposited antimony selenosulfide(Sb_(2)(S,Se)_(3))solar cells.Adjusting the substrate temperature not only results in the design of the flat and dense film with enhanced crystallinity but also leads to the formation of an energy level arrangement with a Sb_(2)(S,Se)_(3)layer that is more favorable for electron transfer.In addition,we developed an oxygen plasma treatment for CdS,reducing the parasitic absorption of the device and resulting in an increase in the short-circuit current density of the solar cell.This study demonstrates the feasibility of MS-CdS in the fabrication of hydrothermal Sb_(2)(S,Se)_(3)solar cells and provides interface optimization strategies to improve device performance.展开更多
基金supported by National Natural Science Foundation of China(22276144).
文摘Carbon nanotubes(CNTs)supported CoB and CoBSn catalysts were synthesized for hydrogen production via NaBH4 hydrolysis.The roles of Sn-promoter and the effect of CNTs treatment on CoB catalysts were evaluated and discussed.It is found that after the addition of Sn promoter,the specific surface area and the generation of active CoB phase are increased,while the oxidation treatment of CNTs results in more loading amounts of active components and enrichment of electron at active sites as well as large surface area.Consequently,the Sn-doped CoB catalysts supported on CNTs with oxidation treatment exhibits a significantly improved activity with a high H_(2)generation rate of 2640 mL/(min·g).Meanwhile,this catalyst shows a low activation energy of 43.7 kJ/mol and relatively high reusability.
基金the Indian Council of Agriculture Research-National Agriculture Higher Education Program(No.A4/003026/2023)to carry out this work during the international faculty training program at Nanyang Technological University,Singapore,under the Institution Development Plan.
文摘Cotton,a crucial commercial fibre crop,depends heavily on seed-associated characteristics like germination rate,vigour,and resistance to post-harvest deterioration for both production and lint quality.Serious cellular damage dur-ing post-harvest processes such as delinting,prolonged seedling emergence periods,decreased viability,increased susceptibility to infections,and lipid peroxidation during storage pose serious problems to seed quality.The perfor-mance of seeds and total crop productivity are adversely affected by these problems.Traditional methods of seed improvement,like physical scarification and seed priming,have demonstrated promise in raising cotton seed vigour and germination rates.Furthermore,modern approaches including plasma therapies,magnetic water treatments,and nanotechnology-based treatments have shown promise in improving seed quality and reducing environmen-tal stresses.By offering sustainable substitutes for conventional approaches,these cutting-edge procedures lessen the need for fungicides and other agrochemicals that pollute the environment.This review explores various con-ventional and emerging strategies to address the detrimental factors impacting cotton seed quality.It emphasizes the importance of integrating classical and advanced approaches to enhance germination,ensure robust crop estab-lishment,and achieve higher yields.In addition to promoting sustainable cotton production,this kind of integration helps preserve the ecosystem and create resilient farming methods.
基金Project(52274369)supported by the National Natural Science Foundation of ChinaProject(623020034)supported by the National Key Laboratory of Science and Technology on High-strength Structural Materials,China。
文摘The pronounced anisotropy in mechanical properties presents a major obstacle to the extensive application of aluminum-lithium(Al-Li)alloys,primarily attributed to heterogeneous precipitate distribution,grain structure variations,and crystallographic texture.This study investigates the impact of pre-thermal treatment prior to hot rolling and aging treatment on the anisotropy of mechanical properties of 2195 alloy sheet fabricated by gas atomization,hot pressing and hot rolling.The results demonstrate that pre-treatment at 450℃for 4 h promotes finer and more uniform distribution of precipitates,effectively mitigating mechanical anisotropy of the alloy sheet.Additionally,this treatment facilitates recrystallization during hot rolling,further reducing mechanical anisotropy.The in-plane anisotropy(IPA)factors for ultimate tensile strength(UTS)and yield strength(YS)are 1.15%and 0.77%,respectively.Subsequent aging treatment enhances grain refinement and the uniformity of the T_(1) phase,suppresses the formation of precipitation-free zones(PFZs),significantly improving the strength and toughness of the alloy sheet.After peak aging at 165℃for 48 h,the alloy sheet exhibits YS of 547 MPa,UTS of 590 MPa,and elongation(EL)of 7.7%.
文摘Kang et al.published a research article on the treatment of ischemic stroke using engineered Treg cells(Kang et al.,Prog Biochem Biophys,2025,52(4):946-956.DOI:10.16476/j.pibb.2025.0019).Their study mainly explores the immunoregulatory role of regulatory T(Treg)cells in ischemic stroke,providing an innovative therapeutic strategy.Neuroinflammation is a major driver of secondary injury after stroke.Existing treatments focus on vascular recanalization while neglecting immune regulation.Their study proposes to modulate neuroinflammation through in vitro-induced Treg cells,offering a novel approach distinct from traditional thrombolysis and endovascular interventions.
基金Project supported by the Haier GroupProject supported by the Eskisehir Osmangazi University,Türkiye。
文摘In this study,samples obtained from 1.3343 high-speed steel punches with TiN coatings were tested.The samples were subjected to heat treatment at different cryogenic temperatures(<196℃)and durations(12,24 and 36 h),followed by tempering at two different temperatures(200,500℃).For performance testing,a ball-on-disk wear test setup was utilized and a total of 6 groups of samples were examined.The effects of cryo-treatment and tempering on microstructure were revealed through microstructural analysis with scanning electron microscopy(SEM),X-ray(XRD diffraction),and Rietveld analysis.Additionally,the hardness of the punches was measured with microhardness measurements.The optimal wear resistance was observed in the 36 h deep cryo-treated and 200℃tempered samples.The characterization study indicates that by cryogenic treatment a significant portion of the retained austenite transformed into martensite and secondary carbides formed,resulting in improved wear resistance and a slight increase in hardness.
文摘In the present study,the mechanical and ballistic properties of friction stir welded(FSW)aluminum alloy(AA5754)samples were investigated,both untreated and cryogenically treated,when impacted by a 7.62 mm armour-piercing(AP)bullet at an impact velocity of 682±20 m/s.The FSW technique was used to prepare the welded samples for AA5754,with an axial force of 7 kN,a feed rate of 20 mm/min,and a speed of 1200 rpm.The cryogenic treatments performed after welding,including deep cryogenic treatment(DCT)at196℃ and shallow cryogenic treatment(SCT)at80℃,for 6 and 72 h,respectively.The microstructure and mechanical characteristics of cryogenically treated and untreated joints were examined.The cryogenic treatment refined the grain size(1.05 μm)and enhanced the microhardness(93 Hv).Moreover,DCT-FSW significantly improved the tensile strength(13.93%)and impact strength(8.45%)compared to untreated FSW sample.Additionally,in untreated FSW samples,the fracture behaviour varied:the impact fracture mode primarily exhibited ductile failure,while the tensile fracture exhibited a mixed fracture mode.In contrast,the tensile and impact fracture modes of the DCT-FSWwere dominated by a ductile failure mode.The DCT-FSW target demonstrated a lower depth of penetration(DOP)of 31 mm compared to the SCT-FSWand untreated FSW targets.Post-ballistic SEM analysis in the crater region of all three zones revealed the formation of frictional grooves,small cracks,and adiabatic shear bands(ASBs).
基金Project(2023RC3066)supported by the Science and Technology Innovation Program of Hunan Province,ChinaProject(2023JJ50079)supported by the Hunan Provincial Natural Science Foundation,China。
文摘Carbonized melamine foam has been recognized as a promising material for microwave absorption due to its exceptional thermal stability,lightweight,and remarkable dielectric properties.In this study,we investigated the impact of nitric acid oxidation on the surface of carbonized melamine foam and its microwave absorption properties.The treated foam exhibits optimal reflection loss of−21.51 dB at 13.20 GHz,with an effective absorption bandwidth of 7.04 GHz.The enhanced absorption properties are primarily attributed to the strengthened dielectric loss,improved impedance matching,and increased polarization losses resulting from the oxidized surfaces.This research demonstrates a promising new approach for research into surface treatments to improve the performances of microwave absorbers.
基金Project(U2202255)supported by the National Natural Science Foundation of ChinaProject(2024JJ2076)supported by the Hunan Provincial Natural Science Foundation of ChinaProject(2023Z092)supported by the Key Technology Research Program of Ningbo,China。
文摘In this paper,equal channel angular pressing and thermomechanical treatment was employed to improve the strength and electrical conductivity of an aging strengthened Cu-Ti-Cr-Mg alloy,and the microstructure and properties of the alloy were investigated in detail.The results showed that the samples deformed by the combination of cryogenic equal channel angular pressing(ECAP)and rolling had good comprehensive properties after aging at 400℃.The tensile strength of the peak-aged and over-aged samples was 1120 MPa and 940 MPa,with their corresponding electrical conductivity of 14.7%IACS and 22.1%IACS,respectively.ECAP and cryogenic rolling introduced high density dislocations,leading to the inhibition of the softening effects and refinement of the grains.After a long time aging at 400℃,the alloy exhibited ultra-high strength with obvious increasing electrical conductivity.The high strength was attributed to the synergistic effect of work hardening,grain refinement strengthening and precipitation strengthening.The precipitation of a large amount of Ti atoms from the matrix led to the high electrical conductivity of the over-aged sample.
基金the financial support by the National Natural Science Foundation of China(No.12272094,51805087 and 51705080)the Natural Science Foundation of Fujian Province of China(No.2022J01541)。
文摘The purpose of this paper is to examine the effect of processing parameters and subsequent heat treatments on the microstructures and bonding strengths of Ti-6Al-4V/AA1050 laminations formed via a non-equal channel lateral co-extrusion process.The microstructural evolution and growth mechanism in the diffusion layer were discussed further to optimize the bonding quality by appropriately adjusting process parameters.Scanning electron microscopes(SEM),energy dispersive spectrometer(EDS),and X-ray diffraction(XRD)were used to characterize interfacial diffusion layers.The shear test was used to determine the mechanical properties of the interfacial diffusion layer.The experimental results indicate that it is possible to co-extrusion Ti-6Al-4V/AA1050 compound profiles using non-equal channel lateral co-extrusion.Different heat treatment processes affect the thickness of the diffusion layer.When the temperature and time of heat treatment increase,the thickness of the reaction layers increases dramatically.Additionally,the shear strength of the Ti-6Al-4V/AA1050 composite interface is proportional to the diffusion layer thickness.It is observed that a medium interface thickness results in superior mechanical performance when compared to neither a greater nor a lesser interface thickness.Microstructural characterization of all heat treatments reveals that the only intermetallic compound observed in the diffusion layers is TiAl_(3).Due to the inter-diffusion of Ti and Al atoms,the TiAl_(3) layer grows primarily at AA1050/TiAl_(3) interfaces.
基金Project(ZZYJKT2024-08)supported by the State Key Laboratory of Precision Manufacturing for Extreme Service Performance,ChinaProject(2022JB11GX004)supported by Selection of the best Candidates to Undertake Key Research Projects by Dalian City,ChinaProject(201806835007)supported by China Scholarship Council。
文摘Wire-arc additive manufacture(WAAM)has great potential for manufacturing of Al-Cu components.However,inferior mechanical properties of WAAM deposited material restrict its industrial application.Inter-layer cold rolling and thermo-mechanical heat treatment(T8)with pre-stretching deformation between solution and aging treatment were adopted in this study.Their effects on hardness,mechanical properties and microstructure were analyzed and compared to the conventional heat treatment(T6).The results show that cold rolling increases the hardness and strengths,which further increase with T8 treatment.The ultimate tensile strength(UTS)of 513 MPa and yield stress(YS)of 413 MPa can be obtained in the inter-layer cold-rolled sample with T8 treatment,which is much higher than that in the as-deposited samples.The cold-rolled samples show higher elongation than that of as-deposited ones due to significant elimination of porosity in cold rolling;while both the T6 and T8 treatments decrease the elongation.The cold rolling and pre-stretching deformation both contribute to the formation of dense and dispersive precipitatedθ′phases,which inhibits the dislocation movement and enhances the strengths;as a result,T8 treatment shows better strengthening effect than the T6 treatment.The strengthening mechanism was analyzed and it was mainly related to work hardening and precipitation strengthening.
基金Xiong′an New Area Science and Technology Innovation Project(2022XACX1000)。
文摘[Background]The previous studies suggest that radioactive elements like Cs and Sr may adversely affect marine ecosystems and the fishing industry.Traditional treatment systems for radioactive wastewater like the Advanced Liquid Processing System(ALPS)and Kurion have faced challenges in limiting concentration and achieving safety criteria.Studies suggest potential long-term impacts on benthic organisms and seafood networks due to radioactive elements like Cs and Sr from the discharged radioactive wastewater,which may hinder post-disaster recovery and provoke economic losses in the fishing industry both domestically and internationally.A series of studies indicate that there are issues of Cs and Sr pollution migration in soil and water conservation in Fukushima.[Methods]To provide feasible solutions,the main article includes five nuclear wastewater treatment technologies,and soil and water conservation measures for different media(water and soil)were evaluated through reviewing the previous fifteen years'articles.To provide feasible solutions,the main articles,the phytoextraction technologies in Cs and Sr treatment within different land use areas were wildly analyzed(Camellia japonica,Arabidopsis halleri and other local species).[Results]1)A 99.9%removal rate for Cs^(+)and 99.5%for Sr^(2+)was achieved by the KFe[Fe(CN)_(6)]and BaSO_(4)co-precipitation method.2)For membrane filtration,Sr^(2+)and Cs^(+)were removed using metal-organic framework(MOF/graphene oxide)and ion exchange techniques using inorganic materials like titanosilicates.The absorption efficiency of membrane filtration for Sr^(2+)and Cs^(+)was at least 92%and 94%,respectively.The study analyzed soil and water conservation technologies in different land uses,river basins and catchments.3)The underground water treatment mainly were completed via the membrance technologies like reverse osmosis and Permeable Reactive Barriers(PRB)technologies.The ^(90) Sr concentration decreased 77%-91%compared to the initial concentration by PRB technology.These diverse methods offered effective strategies for radioactive wastewater treatment,especially the co-precipitation method may be feasible remediation measures to ensure ecological safety surrounding nuclear power utilizing areas.Soil and water conservation measures for soil pollution treatment mainly focused on the use of stabilizers to hinder the migration of Cs and Sr in the soil and the effects of wind erosion such as interpolyelectrolyte complexes.[Conclusions]We evaluated the pollution of Cs and Sr in the Fukushima nuclear radiation soil and water to provide solutions for the treatment of nuclear wastewater and to prevent radionuclide pollutants from migrating into the soil and water.
文摘Objective To evaluate the efficacy of medroxyprogesterone acetate(MA)plus metformin as the primary fertility-sparing treatment for atypical endometrial hyperplasia(AEH)and early-stage grade 1 endometrial adenocarcinoma(G1 EAC)and the recurrence rate after treatment.Methods Sixty patients(aged 20-42 years)with AEH and/or grade 1 EAC limited to the endometrium were enrolled prospectively and randomized into two groups(n=30)to receive oral MA treatment at the daily dose of 160 mg(control)or MA plus oral metformin(850 mg,twice a day)for at least 6 months.The treatment could extend to 12 months until a complete response(CR)was achieved,and follow-up hysteroscopy and curettage were performed every 3 months.For all the patients who achieved CR,endometrial expressions of IGFBP-rP1,p-Akt and p-AMPK were detected immunohistochemically.Results A total of 58 patients completed the treatment.After 9 months of treatment,23(76.7%)patients in the combined treatment group and 20(71.4%)in the control group achieved CR;two patients in the control group achieved CR after converting to the combined treatment.The recurrence rate did not differ significantly between the control group and combined treatment group(30.0%vs 22.7%,P>0.05).Ten(35.7%)patients in the control group experienced significant weight gain of 5.7±6.1 kg,while none of the patients receiving the combined treatment exhibited significant body weight changes.Compared with the control group,the patients receiving the combined treatment showed enhanced endometrial expressions of IGFBP-rP1 and p-AMPK with lowered p-Akt expression.Conclusion Metformin combined with MA may provide an effective option for fertility-sparing treatment of AEH and grade 1 stage IA EAC,and the clinical benefits of metformin for controlling MA-induced weight gain and promoting endometrial expressions of IGFBP-rP1 and p-AMPK while inhibiting p-Akt expression warrants further study.
基金supported by the National Natural Science Foundation of China(22275180)the National Key Research and Development Program of China(2019YFA0405600)the Collaborative Innovation Program of Hefei Science Center,CAS,and the University Synergy Innovation Program of Anhui Province(GXXT-2023-031).
文摘Cadmium sulfide(CdS)is an n-type semiconductor with excellent electrical conductivity that is widely used as an electron transport material(ETM)in solar cells.At present,numerous methods for preparing CdS thin films have emerged,among which magnetron sputtering(MS)is one of the most commonly used vacuum techniques.For this type of technique,the substrate temperature is one of the key deposition parameters that affects the interfacial properties between the target film and substrate,determining the specific growth habits of the films.Herein,the effect of substrate temperature on the microstructure and electrical properties of magnetron-sputtered CdS(MS-CdS)films was studied and applied for the first time in hydrothermally deposited antimony selenosulfide(Sb_(2)(S,Se)_(3))solar cells.Adjusting the substrate temperature not only results in the design of the flat and dense film with enhanced crystallinity but also leads to the formation of an energy level arrangement with a Sb_(2)(S,Se)_(3)layer that is more favorable for electron transfer.In addition,we developed an oxygen plasma treatment for CdS,reducing the parasitic absorption of the device and resulting in an increase in the short-circuit current density of the solar cell.This study demonstrates the feasibility of MS-CdS in the fabrication of hydrothermal Sb_(2)(S,Se)_(3)solar cells and provides interface optimization strategies to improve device performance.