期刊文献+
共找到39篇文章
< 1 2 >
每页显示 20 50 100
基于MC2DCNN-LSTM模型的齿轮箱全故障分类识别模型
1
作者 陈蓉 王磊 《机电工程》 北大核心 2025年第2期287-297,共11页
针对轧机齿轮箱结构复杂、故障信号识别困难、故障部位分类不清等难题,提出了一种基于多通道二维卷积神经网络(MC2DCNN)与长短期记忆神经网络(LSTM)特征融合的故障诊断方法。首先,设计了一种三通道混合编码的二维样本结构,以达到故障识... 针对轧机齿轮箱结构复杂、故障信号识别困难、故障部位分类不清等难题,提出了一种基于多通道二维卷积神经网络(MC2DCNN)与长短期记忆神经网络(LSTM)特征融合的故障诊断方法。首先,设计了一种三通道混合编码的二维样本结构,以达到故障识别与分类目的,对齿轮箱典型故障进行了自适应分类;其次,该模型将齿轮箱的垂直、水平和轴向三个方向的振动信号融合构造输入样本,结合了二维卷积神经网络与长短时记忆神经网络的优势,设计了与之对应的二维卷积神经网络结构,其相较于传统的单通道信号包含了更多的状态信息;最后,分析了轧制过程数据和已有实验数据,对齿轮故障和齿轮箱全故障进行了特征识别和分类,验证了该模型的准确率。研究结果表明:模型对齿轮箱齿面磨损、齿根裂纹、断齿以及齿面点蚀等典型故障识别的平均准确率达到95.9%,最高准确率为98.6%;相较于单通道信号,多通道信号混合编码方式构造的分类样本极大地提升了神经网络分类的准确性,解调出了更丰富的故障信息。根据轧制过程中的运行数据和实验台数据,验证了该智能诊断方法较传统方法在分类和识别准确率上更具优势,为该方法的工程应用提供了理论基础。 展开更多
关键词 高精度轧机齿轮箱 智能故障诊断 多通道二维卷积神经网络 长短期记忆神经网络 数据分类
在线阅读 下载PDF
高维空间聚类下多信道光纤网络大数据异常检测
2
作者 李晟 李嘉泽楷 任昊 《激光杂志》 北大核心 2025年第3期169-174,共6页
光纤网络的数据质量会影响用户通信质量,当其中包含异常数据时,将会使得通信效率和通信质量大幅下降。为此,提出高维空间聚类下多信道光纤网络大数据异常检测算法。根据历史数据特征密度指标,获得异常数据特征;利用高维高斯混合聚类算... 光纤网络的数据质量会影响用户通信质量,当其中包含异常数据时,将会使得通信效率和通信质量大幅下降。为此,提出高维空间聚类下多信道光纤网络大数据异常检测算法。根据历史数据特征密度指标,获得异常数据特征;利用高维高斯混合聚类算法将数据特征从低维空间映射到高维空间中,为了降低计算难度,利用核映射将高维内积计算转换为低维数据核计算;最后利用HGMM算法得到不同时刻下的检测时间序列,融合后输出最终检测结果。实验结果表明,所提方法可取得高达98%的反馈率,且检测到的异常数据类型与实际结果完全一致,可保证光纤网络免受异常数据影响。 展开更多
关键词 高维空间聚类 大数据异常检测 聚类权值 协方差矩阵 条件概率
在线阅读 下载PDF
基于有效协方差矩阵估计的高维数据线性判别分析方法
3
作者 吕泳瑶 张妍 +1 位作者 刘奕彤 王国强 《统计与决策》 北大核心 2025年第19期42-46,共5页
高维数据分类问题在很大程度上依赖于精确的协方差矩阵估计或精度矩阵估计,而样本协方差矩阵的奇异性会给分类带来巨大的挑战。为此,文章提出一种改进的高维数据线性判别分析方法。首先,利用Frobenius范数下协方差矩阵的线性收缩估计和... 高维数据分类问题在很大程度上依赖于精确的协方差矩阵估计或精度矩阵估计,而样本协方差矩阵的奇异性会给分类带来巨大的挑战。为此,文章提出一种改进的高维数据线性判别分析方法。首先,利用Frobenius范数下协方差矩阵的线性收缩估计和旋转不变估计的凸组合来构建更适用于高维数据的有效协方差矩阵估计;其次,使用有效协方差矩阵估计来更新线性判别函数中的总体协方差矩阵,以获得改进的高维数据线性判别分析方法;最后,通过数值实验和实证研究对所提方法与经典机器学习可分类模型进行分类性能比较。结果显示,所提方法具有更高的准确率和更强的鲁棒性,在处理高维数据分类问题时是可行和有效的,尤其是当数据维度增加时,所提方法的优势更加显著。 展开更多
关键词 线性判别分析 协方差矩阵估计 高维数据分类 线性收缩估计 旋转不变估计
在线阅读 下载PDF
最大相关和最大差异的高维数据特征选择算法 被引量:4
4
作者 孟圣洁 于万钧 陈颖 《计算机应用》 CSCD 北大核心 2024年第3期767-771,共5页
针对高维数据存在冗余信息且维度过高的问题,提出基于信息量的最大相关最大差异特征选择算法(MCD)。首先,利用互信息(MI)度量特征和标签之间的相关性,对特征进行排序,选择互信息最大的特征加入特征子集;然后,引入信息距离度量特征之间... 针对高维数据存在冗余信息且维度过高的问题,提出基于信息量的最大相关最大差异特征选择算法(MCD)。首先,利用互信息(MI)度量特征和标签之间的相关性,对特征进行排序,选择互信息最大的特征加入特征子集;然后,引入信息距离度量特征之间的信息冗余性及差异性,设计评价准则对每个特征进行评价,使特征子集中特征和标签的相关性、特征之间的差异性最大;最后,用前向搜索策略结合评价准则进行属性约简,最优化特征子集。采用2种不同的分类器,在6个数据集上和mRMR(minimal-Redundancy-Maximal-Relevance criterion)、RReliefF等5个经典算法进行对比实验,利用分类精度验证MCD的有效性。在支持向量机(SVM)分类器下,平均分类精度提高了5.67~23.80个百分点;在K-近邻(KNN)分类器下,平均分类精度提高了2.69~25.18个百分点。可见,MCD在绝大多数情况下,能有效去除冗余特征,分类精度有明显提高。 展开更多
关键词 特征选择 高维数据 特征冗余 相关性 分类准确率 降维
在线阅读 下载PDF
基于MMTS-AdaBoost的高维结直肠癌癌前病变分类
5
作者 茅婷 张月义 +1 位作者 孙叶芳 虞岚婷 《计算机应用与软件》 北大核心 2024年第1期291-296,共6页
为实现通过提高癌前病变分类准确率,以降低结直肠癌的发生率和死亡率,提出一种基于MMTS-AdaBoost的高维数据分类算法,优化高维数据分类算法,提高分类性能。通过将本征正交思想引入马田系统,构建改进马田系统获取重要特征变量实现降维。... 为实现通过提高癌前病变分类准确率,以降低结直肠癌的发生率和死亡率,提出一种基于MMTS-AdaBoost的高维数据分类算法,优化高维数据分类算法,提高分类性能。通过将本征正交思想引入马田系统,构建改进马田系统获取重要特征变量实现降维。使用降维得到的特征,应用AdaBoost算法对癌前病变类型进行分类。实验结果表明,与使用降维处理的mrmr-AdaBoost和chisquare-AdaBoost算法,以及AdaBoost、BP网络、NB、SVM等经典分类算法相比,MMTS-AdaBoost的F1和G-mean更高,分类性能更优。 展开更多
关键词 结直肠癌癌前病变 高维数据分类 马田系统 ADABOOST 本征正交分解
在线阅读 下载PDF
离群点挖掘方法综述 被引量:69
6
作者 薛安荣 姚林 +2 位作者 鞠时光 陈伟鹤 马汉达 《计算机科学》 CSCD 北大核心 2008年第11期13-18,27,共7页
离群点挖掘可揭示稀有事件和现象、发现有趣的模式,有着广阔的应用前景,因此引起广泛关注。首先介绍离群点的定义、引起离群的原因和离群点挖掘算法的分类,对基于距离和基于密度的离群点挖掘算法进行了比较详细的讨论,指出了其优缺点和... 离群点挖掘可揭示稀有事件和现象、发现有趣的模式,有着广阔的应用前景,因此引起广泛关注。首先介绍离群点的定义、引起离群的原因和离群点挖掘算法的分类,对基于距离和基于密度的离群点挖掘算法进行了比较详细的讨论,指出了其优缺点和发展方向,重点对当前研究的热点——高维大数据量的挖掘、空间数据挖掘、时序离群点挖掘和离群点挖掘技术的应用进行了讨论,指出了进一步研究方向。 展开更多
关键词 离群点挖掘 局部离群点 子空间 剪枝 空间离群点 高维数据 数据流
在线阅读 下载PDF
一种高维空间数据的子空间聚类算法 被引量:12
7
作者 王生生 刘大有 +1 位作者 曹斌 刘杰 《计算机应用》 CSCD 北大核心 2005年第11期2615-2617,共3页
传统网格聚类方法由于没有考虑到相邻网格内的数据点对考查网格的影响,存在不能平滑聚类以及聚类边界判断不清的情况。为此提出了一种高维空间数据的子空间聚类算法,扩展了相邻聚类空间。实验结果显示,克服了传统聚类的不平滑现象,使聚... 传统网格聚类方法由于没有考虑到相邻网格内的数据点对考查网格的影响,存在不能平滑聚类以及聚类边界判断不清的情况。为此提出了一种高维空间数据的子空间聚类算法,扩展了相邻聚类空间。实验结果显示,克服了传统聚类的不平滑现象,使聚类边界得以很好的处理。 展开更多
关键词 网格聚类 高维空间聚类 空间数据挖掘
在线阅读 下载PDF
高维数据相似性度量方法研究 被引量:19
8
作者 谢明霞 郭建忠 +1 位作者 张海波 陈科 《计算机工程与科学》 CSCD 北大核心 2010年第5期92-96,共5页
将低维空间中的距离度量方法(如Lk-范数)应用于高维空间时,随着维数的增加,对象之间距离的对比性将不复存在。研究高维数据有效的距离或相似(相异)度度量方法是一个重要且具有挑战性的课题。通过对传统的距离度量或相似性(相异性)度量... 将低维空间中的距离度量方法(如Lk-范数)应用于高维空间时,随着维数的增加,对象之间距离的对比性将不复存在。研究高维数据有效的距离或相似(相异)度度量方法是一个重要且具有挑战性的课题。通过对传统的距离度量或相似性(相异性)度量方法在高维空间中表现出的不适应性的分析,并对现有的应用于高维数据的相似性度量方法进行总结,提出了高维数据相似性度量函数Hsim(X,Y)的改进方法HDsim(X,Y)。函数HDsim(X,Y)整合了各类型数据的相似性度量方法,在处理数值型、二值型以及分类属性数据上充分体现了原Hsim(X,Y)处理数值型数据、Jaccard系数处理二值数据以及匹配率处理分类属性数据的优越性。通过有效性及实例分析,充分论证了HDsim(X,Y)在高维空间中的有效性。 展开更多
关键词 高维数据 相似性度量 属性相似性 空间相似性
在线阅读 下载PDF
高维数据挖掘算法的研究与进展 被引量:8
9
作者 陈慧萍 王煜 王建东 《计算机工程与应用》 CSCD 北大核心 2006年第24期170-173,共4页
生物信息学和电子商务应用的迅速发展积累了大量高维数据,对高维数据的挖掘变得越来越重要,一般的数据挖掘方法在处理高维数据时会遇到维灾的问题,同时传统相似性度量在高维空间中也变得没有意义。文章从频繁项集挖掘、聚类、分类等三... 生物信息学和电子商务应用的迅速发展积累了大量高维数据,对高维数据的挖掘变得越来越重要,一般的数据挖掘方法在处理高维数据时会遇到维灾的问题,同时传统相似性度量在高维空间中也变得没有意义。文章从频繁项集挖掘、聚类、分类等三个方面对最新的高维数据挖掘算法的现状进行了综述,对这些算法如何解决高维数据挖掘存在的问题进行研究。 展开更多
关键词 数据挖掘 高维数据挖掘 频繁模式 聚类 分类
在线阅读 下载PDF
基于SS/OSF实现高维稀疏数据对象的聚类 被引量:5
10
作者 吴萍 宋瀚涛 +2 位作者 牛振东 张利萍 张聚礼 《北京理工大学学报》 EI CAS CSCD 北大核心 2006年第3期216-220,共5页
为了解决传统聚类方法处理高维稀疏数据对象时聚类结果不理想的问题,提出了SS/OSF聚类方法.该方法基于对象组相似度(SS)和对象组特征向量(OSF),并借助对象组特征向量的可加性实现.采用本方法得到高维稀疏数据对象的聚类结果后,可以根据... 为了解决传统聚类方法处理高维稀疏数据对象时聚类结果不理想的问题,提出了SS/OSF聚类方法.该方法基于对象组相似度(SS)和对象组特征向量(OSF),并借助对象组特征向量的可加性实现.采用本方法得到高维稀疏数据对象的聚类结果后,可以根据聚类结果中各个对象集合的上确界和下确界为新对象进行对象组分类.实验表明,与传统K-means聚类方法相比,随着数据对象数目的增加,该方法无论是在运行时间上,还是在聚类结果的准确度方面都有明显的改进. 展开更多
关键词 高维稀疏二态数据 对象组相似度 对象组特征向量 聚类 分类
在线阅读 下载PDF
面向不平衡数据集分类的离散高维空间距离采样和极端随机树算法 被引量:7
11
作者 袁帅 余伟 +1 位作者 余放 李石君 《计算机应用与软件》 北大核心 2020年第7期194-199,211,共7页
针对电网故障诊断数据的类别分布不平衡,即故障类别相对正常类别比值小问题,提出一种基于ADASYN-DHSD-ET(Adaptive Synthetic Sampling of Discrete High-dimensional Spatial Distance Extremely Randomized Trees)的电网故障诊断方法... 针对电网故障诊断数据的类别分布不平衡,即故障类别相对正常类别比值小问题,提出一种基于ADASYN-DHSD-ET(Adaptive Synthetic Sampling of Discrete High-dimensional Spatial Distance Extremely Randomized Trees)的电网故障诊断方法。在采样阶段根据故障类样本的内部分布密度自适应计算合成新样本数量;在合成新样本时,计算离散型数据样本点之间的高维空间距离,使点之间的合成数量与距离成负相关关系,进行合成新样本;在基分类器生成过程中,节点分裂时随机选择特征,巧妙借助极端随机树随机性强方差低的特性解决了噪声数据的影响。实验结果对比传统分类和常用不平衡分类表明,该算法有效地提升了故障类的精度,同时克服了以往别的算法随机过采样导致的正常类精度下降,G-mean值达到82.6%,具有优越的电网故障诊断预测性能。 展开更多
关键词 不平衡数据 电网故障诊断 离散高维空间距离 自适应合成采样 极端随机树 多类分类
在线阅读 下载PDF
基于特征的空间数据相似性查询研究 被引量:2
12
作者 夏宇 朱欣焰 周春辉 《计算机工程与应用》 CSCD 北大核心 2007年第25期15-17,47,共4页
针对目前空间数据相似性查询的广泛应用需求和实际应用情况,提出基于特征的空间数据相似性查询(Feature Based Spatial Data Similarity Query,FBSDQ)的概念,并给出了形式化定义,分析指出了FBSDQ的特点。提出了统一的FBSDQ处理框架及其... 针对目前空间数据相似性查询的广泛应用需求和实际应用情况,提出基于特征的空间数据相似性查询(Feature Based Spatial Data Similarity Query,FBSDQ)的概念,并给出了形式化定义,分析指出了FBSDQ的特点。提出了统一的FBSDQ处理框架及其实现的关键技术,以典型的度量空间高维索引结构VP树为例,讨论了基于距离的度量空间高维索引技术,为空间数据相似性查询的研究提供了技术支持。 展开更多
关键词 空间数据 相似性查询 度量空间 高维索引
在线阅读 下载PDF
高维数据多级模糊模式识别的分类研究 被引量:1
13
作者 谢志强 张豪 +1 位作者 杨静 谭怀生 《计算机应用研究》 CSCD 北大核心 2009年第11期4045-4047,4053,共4页
通过分析对象属性间的关系,提出了一种基于改进的多级模糊模式识别的分类方法。该方法重点考虑对象属性间影响较大的因素,以此建立影响对象分类的属性之间的简化关系,使分类结果更加合理;针对分类标准为对象属性分类的离散值,存在对象... 通过分析对象属性间的关系,提出了一种基于改进的多级模糊模式识别的分类方法。该方法重点考虑对象属性间影响较大的因素,以此建立影响对象分类的属性之间的简化关系,使分类结果更加合理;针对分类标准为对象属性分类的离散值,存在对象属性值介于中间状态不便分类问题,通过建立属性值所属级别的矩阵来确定属性权重,使分类精确;利用Rough集的特征属性约简算法降低数据集的维数,提高高维数据的分类效率。经实例证明该方法分类准确、效率高。 展开更多
关键词 分类 多级模糊模式识别 权重 约简 高维数据
在线阅读 下载PDF
基于SVM的高维不平衡数据集分类算法 被引量:3
14
作者 赵小强 张露 《南京大学学报(自然科学版)》 CAS CSCD 北大核心 2018年第2期452-461,共10页
由于数据量的不断增长,出现了大量的不平衡高维数据,传统的数据挖掘分类算法在处理这些数据时,易受到样本分布和维数的影响,存在分类性能不佳的问题.提出一种针对不平衡高维数据集的改进支持向量机(Supported Vector Machine,SVM)分类算... 由于数据量的不断增长,出现了大量的不平衡高维数据,传统的数据挖掘分类算法在处理这些数据时,易受到样本分布和维数的影响,存在分类性能不佳的问题.提出一种针对不平衡高维数据集的改进支持向量机(Supported Vector Machine,SVM)分类算法,首先通过核函数将数据集映射到特征空间中,再引入改进的核SMOTE(Kernel Synthetic Minority Over-sampling Technique)算法而得到正类样本,使两类样本数目平衡化;然后将维数高的数据集通过稀疏表示的方法投影到低维的空间中,实现降维;最后根据空间的距离关系来确定在输入空间中合成样本的原像,再对得到的平衡样本集通过SVM来分类,通过仿真实验验证了该算法对于高维不平衡数据集有较优的分类性能. 展开更多
关键词 高维不平衡数据集 分类算法 支持向量机(SVM) 核SMOTE 稀疏表示
在线阅读 下载PDF
基于超网络和投影降维的高维数据流在线分类算法 被引量:3
15
作者 茹蓓 《计算机应用与软件》 北大核心 2020年第10期278-285,共8页
为了提高高维数据流在线分类的准确率,设计一种基于超网络和投影降维的高维数据流在线分类算法。将高维数据流的特征子集建模为超网络模型,算法的学习目标是搜索最优的超边集合,选出判别能力强的特征子集。利用高斯核将高维空间的数据... 为了提高高维数据流在线分类的准确率,设计一种基于超网络和投影降维的高维数据流在线分类算法。将高维数据流的特征子集建模为超网络模型,算法的学习目标是搜索最优的超边集合,选出判别能力强的特征子集。利用高斯核将高维空间的数据点投影到低维空间,采用梯度下降法计算数据点间的相似性矩阵。基于贝叶斯分类器模型更新机制,动态地学习新到达的数据流,基于学习的结果更新超网络的超边,再利用超网络指导分类器进行分类。仿真结果表明,该算法实现了较高的分类准确率,并且对于噪声也具有较好的鲁棒性。 展开更多
关键词 超网络 超图 高维数据流 数据流分类 贝叶斯分类器 数据降维
在线阅读 下载PDF
高维数据自适应分类研究
16
作者 吴永亮 万旺根 许雪琼 《计算机工程》 CAS CSCD 北大核心 2010年第18期210-213,共4页
利用高维海量数据点的自身特性和所属类别的唯一性,提出一种改进的无监督分类算法。计算高维点间的互相似度,利用相似性图像处理技术,在每次迭代计算中对数据集进行分割与分类,对数量较少的孤立点进行重分类。实验结果表明,该算法可在... 利用高维海量数据点的自身特性和所属类别的唯一性,提出一种改进的无监督分类算法。计算高维点间的互相似度,利用相似性图像处理技术,在每次迭代计算中对数据集进行分割与分类,对数量较少的孤立点进行重分类。实验结果表明,该算法可在没有人工干预的情况下实现高维数据的自适应分类,相比K-means和Isodata算法,所需的计算迭代次数与计算时间较少。 展开更多
关键词 高维海量数据 自适应分类 相似性 无监督
在线阅读 下载PDF
基于对象组特征向量的聚类与分类的实现
17
作者 吴萍 张利萍 《计算机工程》 EI CAS CSCD 北大核心 2006年第16期17-19,57,共4页
高维稀疏数据的聚类分析是目前数据挖掘领域内亟待解决的问题之一。传统的聚类方法中,大部分不适用于高维稀疏数据,不能得到满意的结果。该文借助对象组相似度和对象组的特征向量,提出了一种实现聚类的方法。根据聚类结果后,根据聚类集... 高维稀疏数据的聚类分析是目前数据挖掘领域内亟待解决的问题之一。传统的聚类方法中,大部分不适用于高维稀疏数据,不能得到满意的结果。该文借助对象组相似度和对象组的特征向量,提出了一种实现聚类的方法。根据聚类结果后,根据聚类集合的上确界和下确界给出新对象的分类。该方法思想明了,实现起来简单轻松,结果准确可靠。 展开更多
关键词 高维稀疏二态数据 对象组相似度 对象组特征向量 聚类 分类
在线阅读 下载PDF
数据挖掘空间聚类 被引量:5
18
作者 柳彦平 王文杰 谈恒贵 《计算机工程与应用》 CSCD 北大核心 2005年第35期173-176,196,共5页
聚类分析在数据挖掘领域中得到了广泛的应用,对空间数据的聚类是其中的一个重要研究方向。文章提出了对空间数据聚类的6个标准,并基于这6个标准对一些传统的空间数据聚类算法作了分析比较。在分析的基础上指出没有一种老的算法能同时处... 聚类分析在数据挖掘领域中得到了广泛的应用,对空间数据的聚类是其中的一个重要研究方向。文章提出了对空间数据聚类的6个标准,并基于这6个标准对一些传统的空间数据聚类算法作了分析比较。在分析的基础上指出没有一种老的算法能同时处理大量数据点、高维数据和多噪声的问题。接着对近年来改进或创新的聚类算法作了简要分析,并对未来发展方向进行了简要展望,目的主要是便于研究者全面了解和掌握空间数据聚类的现有算法,发现更高性能的聚类算法,也使用户能方便快速地找到适合特定问题的聚类方法。 展开更多
关键词 数据挖掘 空间数据 聚类算法 可伸缩性 高维数据
在线阅读 下载PDF
基于权重搜索树改进K近邻的高维分类算法 被引量:9
19
作者 梁淑蓉 陈基漓 谢晓兰 《科学技术与工程》 北大核心 2021年第7期2760-2766,共7页
信息采集技术日益发展导致的高维、大规模数据,给数据挖掘带来了巨大挑战,针对K近邻分类算法在高维数据分类中存在效率低、时间成本高的问题,提出基于权重搜索树改进K近邻(K-nearest neighbor algorithm based on weight search tree, K... 信息采集技术日益发展导致的高维、大规模数据,给数据挖掘带来了巨大挑战,针对K近邻分类算法在高维数据分类中存在效率低、时间成本高的问题,提出基于权重搜索树改进K近邻(K-nearest neighbor algorithm based on weight search tree, KNN-WST)的高维分类算法,该算法根据特征属性权重的大小,选取部分属性作为结点构建搜索树,通过搜索树将数据集划分为不同的矩阵区域,未知样本需查找搜索树获得最"相似"矩阵区域,仅与矩阵区域中的数据距离度量,从而降低数据规模,以减少时间复杂度。并研究和讨论最适合高维数据距离度量的闵式距离。6个标准高维数据仿真实验表明,KNN-WST算法对比K近邻分类算法、决策树和支持向量机(support vector machine, SVM)算法,分类时间显著减少,同时分类准确率也优于其他算法,具有更好的性能,有望为解决高维数据相关问题提供一定参考。 展开更多
关键词 高维数据 K近邻分类算法 特征属性 搜索树 闵氏距离
在线阅读 下载PDF
基于标记与特征依赖最大化的弱标记集成分类 被引量:3
20
作者 谭桥宇 余国先 +1 位作者 王峻 郭茂祖 《软件学报》 EI CSCD 北大核心 2017年第11期2851-2864,共14页
弱标记学习是多标记学习的一个重要分支,近几年已被广泛研究并被应用于多标记样本的缺失标记补全和预测等问题.然而,针对特征集合较大、更容易拥有多个语义标记和出现标记缺失的高维数据问题,现有弱标记学习方法普遍易受这类数据包含的... 弱标记学习是多标记学习的一个重要分支,近几年已被广泛研究并被应用于多标记样本的缺失标记补全和预测等问题.然而,针对特征集合较大、更容易拥有多个语义标记和出现标记缺失的高维数据问题,现有弱标记学习方法普遍易受这类数据包含的噪声和冗余特征的干扰.为了对高维多标记数据进行准确的分类,提出了一种基于标记与特征依赖最大化的弱标记集成分类方法 En WL.En WL首先在高维数据的特征空间多次利用近邻传播聚类方法,每次选择聚类中心构成具有代表性的特征子集,降低噪声和冗余特征的干扰;再在每个特征子集上训练一个基于标记与特征依赖最大化的半监督多标记分类器;最后,通过投票集成这些分类器实现多标记分类.在多种高维数据集上的实验结果表明,En WL在多种评价度量上的预测性能均优于已有相关方法. 展开更多
关键词 弱标记学习 高维数据 特征子集 依赖最大化 集成分类
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部