期刊文献+

基于SS/OSF实现高维稀疏数据对象的聚类 被引量:5

SS/OSF for High-Dimensional Sparse Data Object Clustering
在线阅读 下载PDF
导出
摘要 为了解决传统聚类方法处理高维稀疏数据对象时聚类结果不理想的问题,提出了SS/OSF聚类方法.该方法基于对象组相似度(SS)和对象组特征向量(OSF),并借助对象组特征向量的可加性实现.采用本方法得到高维稀疏数据对象的聚类结果后,可以根据聚类结果中各个对象集合的上确界和下确界为新对象进行对象组分类.实验表明,与传统K-means聚类方法相比,随着数据对象数目的增加,该方法无论是在运行时间上,还是在聚类结果的准确度方面都有明显的改进. Results of clustering are generally not ideal with traditional clustering method. Thus a SS/OSF clustering method is proposed for high-dimensional sparse data object based on set similarity (SS) and object set feature (OSF) with the addability of object set features. After the object clusters are gained by the SS/OSF clustering method, and according to the supremum and infimum of object clustering set, the new object can be distributed to all kinds of different clusters. Compared with the traditional K-means clustering method, the test results show that, as the number of object increases, the runtime and precision of results of the SS/OSF clustering method are seen to be clearly improved.
出处 《北京理工大学学报》 EI CAS CSCD 北大核心 2006年第3期216-220,共5页 Transactions of Beijing Institute of Technology
基金 霍英东教育基金资助项目(91101) 科技部基础性工作专项资金资助项目(2002DEA20018)
关键词 高维稀疏二态数据 对象组相似度 对象组特征向量 聚类 分类 high-dimensional sparse binary data set similarity object set feature clustering classification
作者简介 吴萍(1972-),女,在职博士生,E-mail:wuping@bit.edu.cn; 宋瀚涛(1940-),男,教授,博士生导师.
  • 相关文献

参考文献4

  • 1Agrawal R.Automatic subspace clustering of high dimensional data mining applications[C]∥ Proceedings ACM SIGMOD International Conference on Management of Data.Washington:ACM Press,1998:94-105.
  • 2Zhang Tian,Ramakrishnan R.BIRCH:an efficient data clustering method for very large databases[C]∥Proceedings of the 1996 ACM SIGMOD International Conference on Management of Data.Montreal:ACM Press,1996:103-114.
  • 3Wang Yitong,Kitsuregawa M.Use link-based clustering to improve Web search results[C]∥ Proceedings of the 2nd International Conference on Web Information Systems Engineering.Kyoto:IEEE Computer Society,2001:119-128.
  • 4原野,沈钧毅.一种基于序列挖掘的分类系统框架[J].西安交通大学学报,2004,38(4):400-403. 被引量:1

二级参考文献5

  • 1[1]Han J, Kambr M. Data mining concepts and techniques [M]. Beijing: Academic Press and Morgan Kaufmann Publishers, 2001.
  • 2[2]Agrawal R, Srikant R. Mining sequential patterns [A]. The 11th Intl Conf on Data Mining, Taipei, 1995.
  • 3[3]Zaki M J. Sequence mining in categorical domains: incorporating constraints [A]. The 9th Intl Conf on Information and Knowledge Management, Washington DC,2000.
  • 4[4]Lesh N, Zaki M, Ogihara M. Mining features for sequence classification [A]. 5th Intl Conf on Knowledge Discovery and Data Mining , San Diego, 1999.
  • 5[5]Yuan Ye, Song Qinbao, Shen Junyi. Automatic video classification using decision tree method [A]. Intel Conf on Machine Learning and Cybernetics, Beijing, 2002.

同被引文献42

引证文献5

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部