The H∞ output feedback control problem for uncertain discrete-time switched systems is reasearclled. A new characterization of stability and H∞ performance for the switched system under arbitrary switching is obtain...The H∞ output feedback control problem for uncertain discrete-time switched systems is reasearclled. A new characterization of stability and H∞ performance for the switched system under arbitrary switching is obtained by using switched Lyapunov function. Then, based on the characterization, a linear matrix inequality (LMI) approach is developed to design a switched output feedback controller which guarantees the stability and H∞ performance of the closed-loop system. A numerical example is presented to demonstrate the application of the proposed method.展开更多
The design of decentralized robust H_∞ state feedback controller for large-scale interconnected systems with value bounded uncertainties existing in the state, control input and interconnected matrices was investigat...The design of decentralized robust H_∞ state feedback controller for large-scale interconnected systems with value bounded uncertainties existing in the state, control input and interconnected matrices was investigated. Based on the bounded real lemma a sufficient condition for the existence of a decentralized robust H_∞ state feedback controller was derived. This condition is expressed as the feasibility problem of a certain nonlinear matrix inequality. The controller, which makes the closed-loop large-scale system robust stable and satisfies the given H_∞ performance, is obtained by the offered homotopy iterative linear matrix inequality method. A numerical example is given to demonstrate the effectiveness of the proposed method.展开更多
This paper focuses on the H∞ controller design for linear systems with time-varying delays and norm-bounded parameter perturbations in the system state and control/disturbance. On the existence of delayed/undelayed f...This paper focuses on the H∞ controller design for linear systems with time-varying delays and norm-bounded parameter perturbations in the system state and control/disturbance. On the existence of delayed/undelayed full state feedback controllers, we present a sufficient condition and give a design method in the form of Riccati equation. The controller can not only stabilize the time-delay system, but also make the H∞ norm of the closed-loop system be less than a given bound. This result practically generalizes the related results in current literature.展开更多
The problem of fuzzy modeling for state and input time-delays systems with a class of nonlinear uncertainties by fuzzy T-S model is addressed.By using the linear matrix inequality(LMI) method, the problem of fuzzy r...The problem of fuzzy modeling for state and input time-delays systems with a class of nonlinear uncertainties by fuzzy T-S model is addressed.By using the linear matrix inequality(LMI) method, the problem of fuzzy robust H ∞ controller design for the system is studied.Assuming that the nonlinear uncertain functions in the model considered are gain-bounded, a sufficient condition for the robustly asymptotic stability of the closed-loop system is obtained via Lyapunov stability theory.By solving the LMI, a feedback control law which guarantees the robustly asymptotic stability of the closed-loop system is constructed and the effect of the disturbance input on the controlled output is ruduced to a prescribed level.展开更多
在这篇论文,一个概括加速反馈控制(声频抗流圈) 设计方法,命名声频抗流圈提高了 H ∞控制器,为两个被建议完整激活并且在激活的非线性的自治车辆系统下面。声频抗流圈基于已知的动力学作为柔韧的改进被设计到正常控制。首先,以便拒...在这篇论文,一个概括加速反馈控制(声频抗流圈) 设计方法,命名声频抗流圈提高了 H ∞控制器,为两个被建议完整激活并且在激活的非线性的自治车辆系统下面。声频抗流圈基于已知的动力学作为柔韧的改进被设计到正常控制。首先,以便拒绝不确定性和外部骚乱,线性 prefilter 在新声频抗流圈设计方法被使用在正常声频抗流圈代替高获得。然后,背走算法被用于 AFC 设计在激活的系统下面。两个的分析在有限获得 L2 稳定性显示出的频率领域和输入产量的骚乱变细新控制器设计方法是适用的。最后,模拟关于无人的模型直升飞机的追踪的控制被进行。结果与没有声频抗流圈,追踪的控制获得验证新方法的可行性的那些相比。展开更多
Considering the design problem of non-fragile decentralized H∞ controller with gain variations, the dynamic feedback controller by measurement feedback for uncertain linear systems is constructed and studied. The par...Considering the design problem of non-fragile decentralized H∞ controller with gain variations, the dynamic feedback controller by measurement feedback for uncertain linear systems is constructed and studied. The parameter uncertainties are considered to be unknown but norm bounded. The design procedures are investigated in terms of positive definite solutions to modify algebraic Riccati inequalities. Using information exchange among local controllers, the designed non-fragile decentralized H∞ controllers guarantee that the uncertain closed-loop linear systems are stable and with H∞ -norm bound on disturbance attenuation. A sufficient condition that there are such non-fragile H∞ controllers is obtained by algebraic Riccati inequalities. The approaches to solve modified algebraic Riccati inequalities are carried out preliminarily. Finally, a numerical example to show the validity of the proposed approach is given.展开更多
A novel decentralized indirect adaptive output feedback fuzzy controller is developed for a class of large-scale uncertain nonlinear systems using error filtering.By the properly filtering of the observation error dyn...A novel decentralized indirect adaptive output feedback fuzzy controller is developed for a class of large-scale uncertain nonlinear systems using error filtering.By the properly filtering of the observation error dynamics,the strictly positive-real condition is guaranteed to hold such that the proposed output feedback and adaptation mechanisms are practicable in practice owing to the fact that its implementation does not require the observation error vector itself any more,which corrects the impracticable schemes in the previous literature involved.The presented control algorithm can ensure that all the signals of the closed-loop large-scale system keep uniformly ultimately bounded and that the tracking error converges to zero asymptotically.The decentralized output feedback fuzzy controller can be applied to address the longitudinal control problem of a string of vehicles within an automated highway system(AHS) and the effectiveness of the design procedure is supported by simulation results.展开更多
The robust stabilization of nonlinear systems with mismatched uncertainties is investigated. Based on the stability of the nominal system, a new approach to synthesizing a class of continuous state feedback controller...The robust stabilization of nonlinear systems with mismatched uncertainties is investigated. Based on the stability of the nominal system, a new approach to synthesizing a class of continuous state feedback controllers for uncertain nonlinear dynamical systems is proposed. By such feedback controllers, the exponential stability of uncertain nonlinear dynamical systems can be guaranteed. The approach can give a clear insight to system analysis. An illustrative example is given to demonstrate the utilization of the approach developed. Simulation results show that the method presented is practical and effective.展开更多
This article investigates the problem of robust H∞ controller design for sampled-data systems with time-varying norm-bounded parameter uncertainties in the state matrices. Attention is focused on the design of a caus...This article investigates the problem of robust H∞ controller design for sampled-data systems with time-varying norm-bounded parameter uncertainties in the state matrices. Attention is focused on the design of a causal sampled-data controller, which guarantees the asymptotical stability of the closed-loop system and reduces the effect of the disturbance input on the controlled output to a prescribed H∞ performance bound for all admissible uncertainties. Sufficient condition for the solvability of the problem is established in terms of linear matrix inequalities (LMIs). It is shown that the desired H∞ controller can be constructed by solving certain LMIs. An illustrative example is given to demonstrate the effectiveness of the proposed method.展开更多
In order to avoid the system performance deterioration caused by the wireless fading channel and imperfect channel estimation in cognitive radio networks, the spectrum sharing problem with the consideration of feedbac...In order to avoid the system performance deterioration caused by the wireless fading channel and imperfect channel estimation in cognitive radio networks, the spectrum sharing problem with the consideration of feedback control information from the primary user is analyzed. An improved spectrum sharing algorithm based on the combination of the feedback control information and the optimization algorithm is proposed. The relaxation method is used to achieve the approximate spectrum sharing model, and the spectrum sharing strategy that satisfies the individual outage probability constraints can be obtained iteratively with the observed outage probability. Simulation results show that the proposed spectrum sharing algorithm can achieve the spectrum sharing strategy that satisfies the outage probability constraints and reduce the average outage probability without causing maximum transmission rate reduction of the secondary user.展开更多
The problem of robust stabilization for uncertain continuous descriptor system with state and control delay is considered. The time-varying parametric uncertainty is assumed to be norm-bounded. The purpose of the robu...The problem of robust stabilization for uncertain continuous descriptor system with state and control delay is considered. The time-varying parametric uncertainty is assumed to be norm-bounded. The purpose of the robust stabilization is to design a memoryless state feedback law such that the resulting closed-loop system is robustly stable A sufficient condition that uncertain continuous descriptor system is robustly stabilizabled by state feedback law is derived in terms of linear matrix inequality (LMI). Finally, a numerical example is provided to demonstrate the application of the proposed method.展开更多
A new proportional-integral (PI) sliding surface is designed for a class of uncertain nonlinear state-delayed systems. Based on this, an adaptive sliding mode controller (ASMC) is synthesized, which guarantees the...A new proportional-integral (PI) sliding surface is designed for a class of uncertain nonlinear state-delayed systems. Based on this, an adaptive sliding mode controller (ASMC) is synthesized, which guarantees the occurrence of sliding mode even when the system is undergoing parameter uncertainties and external disturbance. The resulting sliding mode has the same order as the original system, so that it becomes easy to solve the H∞ control problem by designing a memoryless H∞ state feedback controller. A delay-dependent sufficient condition is proposed in terms of linear matrix inequalities (LMIs), which guarantees the sliding mode robust asymptotically stable and has a noise attenuation level γ in an H∞ sense. The admissible state feedback controller can be found by solving a sequential minimization problem subject to LMI constraints by applying the cone complementary linearization method. This design scheme combines the strong robustness of the sliding mode control with the H∞ norm performance. A numerical example is given to illustrate the effectiveness of the proposed scheme.展开更多
The problem of robust H_∞ control for uncertain neutral stochastic systems with time-varying delay is discussed.The parameter uncertaintie is assumed to be time varying norm-bounded.First,the stochastic robust stabil...The problem of robust H_∞ control for uncertain neutral stochastic systems with time-varying delay is discussed.The parameter uncertaintie is assumed to be time varying norm-bounded.First,the stochastic robust stabilization of the stochastic system without disturbance input is investigated by nonlinear matrix inequality method.Then,a full-order stochastic dynamic output feedback controller is designed by solving a bilinear matrix inequality(BMI),which ensures a prescribed stochastic robust H_∞ performance level for the resulting closed-loop system with nonzero disturbance input and for all admissible uncertainties.An illustrative example is provided to show the feasibility of the controller and the potential of the proposed technique.展开更多
In the paper, the problem of H∞ decentralized state feedback control for largescale systems is described. An algorithm is proposed which uses the method of a feasible direction matrix. The algorithm only requires the...In the paper, the problem of H∞ decentralized state feedback control for largescale systems is described. An algorithm is proposed which uses the method of a feasible direction matrix. The algorithm only requires the solution of an algebraic Riccati equation (ARE) and makes the H∞norm of the closedloop transfer function matrix from disturbance inputs to controlled outputs less than a given constant which ensure the stability of the overall controlled system at each iteration. The given example shows that the convergence of the algorithm is satisfactory.展开更多
This paper studies the robust stochastic stabilization and robust H∞ control for linear time-delay systems with both Markovian jump parameters and unknown norm-bounded parameter uncertainties. This problem can be sol...This paper studies the robust stochastic stabilization and robust H∞ control for linear time-delay systems with both Markovian jump parameters and unknown norm-bounded parameter uncertainties. This problem can be solved on the basis of stochastic Lyapunov approach and linear matrix inequality (LMI) technique. Sufficient conditions for the existence of stochastic stabilization and robust H∞ state feedback controller are presented in terms of a set of solutions of coupled LMIs. Finally, a numerical example is included to demonstrate the practicability of the proposed methods.展开更多
基金the National Natural Science Foundation of China (60574083)the Scientific Research Foundation for the Returned Overseas Chinese Scholars (SRF for ROCS),State Education Ministry of China.
文摘The H∞ output feedback control problem for uncertain discrete-time switched systems is reasearclled. A new characterization of stability and H∞ performance for the switched system under arbitrary switching is obtained by using switched Lyapunov function. Then, based on the characterization, a linear matrix inequality (LMI) approach is developed to design a switched output feedback controller which guarantees the stability and H∞ performance of the closed-loop system. A numerical example is presented to demonstrate the application of the proposed method.
基金Project (60474003) supported by the National Natural Science Foundation of China project(20050533028) supported bythe Specialized Research Fund for the Doctoral Programof Higher Education of China
文摘The design of decentralized robust H_∞ state feedback controller for large-scale interconnected systems with value bounded uncertainties existing in the state, control input and interconnected matrices was investigated. Based on the bounded real lemma a sufficient condition for the existence of a decentralized robust H_∞ state feedback controller was derived. This condition is expressed as the feasibility problem of a certain nonlinear matrix inequality. The controller, which makes the closed-loop large-scale system robust stable and satisfies the given H_∞ performance, is obtained by the offered homotopy iterative linear matrix inequality method. A numerical example is given to demonstrate the effectiveness of the proposed method.
基金This project was supported by the National Natural Science Foundation of China (No. 69974022).
文摘This paper focuses on the H∞ controller design for linear systems with time-varying delays and norm-bounded parameter perturbations in the system state and control/disturbance. On the existence of delayed/undelayed full state feedback controllers, we present a sufficient condition and give a design method in the form of Riccati equation. The controller can not only stabilize the time-delay system, but also make the H∞ norm of the closed-loop system be less than a given bound. This result practically generalizes the related results in current literature.
基金supported by the Program for Natural Science Foundation of Beijing (4062030)Young Teacher Research Foundation of North China Electric Power University
文摘The problem of fuzzy modeling for state and input time-delays systems with a class of nonlinear uncertainties by fuzzy T-S model is addressed.By using the linear matrix inequality(LMI) method, the problem of fuzzy robust H ∞ controller design for the system is studied.Assuming that the nonlinear uncertain functions in the model considered are gain-bounded, a sufficient condition for the robustly asymptotic stability of the closed-loop system is obtained via Lyapunov stability theory.By solving the LMI, a feedback control law which guarantees the robustly asymptotic stability of the closed-loop system is constructed and the effect of the disturbance input on the controlled output is ruduced to a prescribed level.
文摘在这篇论文,一个概括加速反馈控制(声频抗流圈) 设计方法,命名声频抗流圈提高了 H ∞控制器,为两个被建议完整激活并且在激活的非线性的自治车辆系统下面。声频抗流圈基于已知的动力学作为柔韧的改进被设计到正常控制。首先,以便拒绝不确定性和外部骚乱,线性 prefilter 在新声频抗流圈设计方法被使用在正常声频抗流圈代替高获得。然后,背走算法被用于 AFC 设计在激活的系统下面。两个的分析在有限获得 L2 稳定性显示出的频率领域和输入产量的骚乱变细新控制器设计方法是适用的。最后,模拟关于无人的模型直升飞机的追踪的控制被进行。结果与没有声频抗流圈,追踪的控制获得验证新方法的可行性的那些相比。
基金the National Natural Science Foundation of China (60674019).
文摘Considering the design problem of non-fragile decentralized H∞ controller with gain variations, the dynamic feedback controller by measurement feedback for uncertain linear systems is constructed and studied. The parameter uncertainties are considered to be unknown but norm bounded. The design procedures are investigated in terms of positive definite solutions to modify algebraic Riccati inequalities. Using information exchange among local controllers, the designed non-fragile decentralized H∞ controllers guarantee that the uncertain closed-loop linear systems are stable and with H∞ -norm bound on disturbance attenuation. A sufficient condition that there are such non-fragile H∞ controllers is obtained by algebraic Riccati inequalities. The approaches to solve modified algebraic Riccati inequalities are carried out preliminarily. Finally, a numerical example to show the validity of the proposed approach is given.
基金supported by the National Natural Science Foundation of China (6096400460864004+2 种基金50808025)the Fok Ying Tung Education Foundation (122013)the Scientific Research Fund of Hunan Provincial Education Department (08A003)
文摘A novel decentralized indirect adaptive output feedback fuzzy controller is developed for a class of large-scale uncertain nonlinear systems using error filtering.By the properly filtering of the observation error dynamics,the strictly positive-real condition is guaranteed to hold such that the proposed output feedback and adaptation mechanisms are practicable in practice owing to the fact that its implementation does not require the observation error vector itself any more,which corrects the impracticable schemes in the previous literature involved.The presented control algorithm can ensure that all the signals of the closed-loop large-scale system keep uniformly ultimately bounded and that the tracking error converges to zero asymptotically.The decentralized output feedback fuzzy controller can be applied to address the longitudinal control problem of a string of vehicles within an automated highway system(AHS) and the effectiveness of the design procedure is supported by simulation results.
基金This project was supported by the National Natural Science Foundation of China (No. 69674109).
文摘The robust stabilization of nonlinear systems with mismatched uncertainties is investigated. Based on the stability of the nominal system, a new approach to synthesizing a class of continuous state feedback controllers for uncertain nonlinear dynamical systems is proposed. By such feedback controllers, the exponential stability of uncertain nonlinear dynamical systems can be guaranteed. The approach can give a clear insight to system analysis. An illustrative example is given to demonstrate the utilization of the approach developed. Simulation results show that the method presented is practical and effective.
基金supported by the National Natural Science Foundation of China (60574004 60736024+1 种基金 60674043) the Key Project of Science and Technology Research of the Ministry of Education of China (708069).
文摘This article investigates the problem of robust H∞ controller design for sampled-data systems with time-varying norm-bounded parameter uncertainties in the state matrices. Attention is focused on the design of a causal sampled-data controller, which guarantees the asymptotical stability of the closed-loop system and reduces the effect of the disturbance input on the controlled output to a prescribed H∞ performance bound for all admissible uncertainties. Sufficient condition for the solvability of the problem is established in terms of linear matrix inequalities (LMIs). It is shown that the desired H∞ controller can be constructed by solving certain LMIs. An illustrative example is given to demonstrate the effectiveness of the proposed method.
基金supported by the National Natural Science Foundation of China (61073183)the Natural Science Foundation for the Youth of Heilongjiang Province (QC2012C070)
文摘In order to avoid the system performance deterioration caused by the wireless fading channel and imperfect channel estimation in cognitive radio networks, the spectrum sharing problem with the consideration of feedback control information from the primary user is analyzed. An improved spectrum sharing algorithm based on the combination of the feedback control information and the optimization algorithm is proposed. The relaxation method is used to achieve the approximate spectrum sharing model, and the spectrum sharing strategy that satisfies the individual outage probability constraints can be obtained iteratively with the observed outage probability. Simulation results show that the proposed spectrum sharing algorithm can achieve the spectrum sharing strategy that satisfies the outage probability constraints and reduce the average outage probability without causing maximum transmission rate reduction of the secondary user.
基金This project was supported by the Science and Technology Found of Liaoning Province (200140104)
文摘The problem of robust stabilization for uncertain continuous descriptor system with state and control delay is considered. The time-varying parametric uncertainty is assumed to be norm-bounded. The purpose of the robust stabilization is to design a memoryless state feedback law such that the resulting closed-loop system is robustly stable A sufficient condition that uncertain continuous descriptor system is robustly stabilizabled by state feedback law is derived in terms of linear matrix inequality (LMI). Finally, a numerical example is provided to demonstrate the application of the proposed method.
基金This project was supported by the National Natural Science Foundation of China(69874008)
文摘A new proportional-integral (PI) sliding surface is designed for a class of uncertain nonlinear state-delayed systems. Based on this, an adaptive sliding mode controller (ASMC) is synthesized, which guarantees the occurrence of sliding mode even when the system is undergoing parameter uncertainties and external disturbance. The resulting sliding mode has the same order as the original system, so that it becomes easy to solve the H∞ control problem by designing a memoryless H∞ state feedback controller. A delay-dependent sufficient condition is proposed in terms of linear matrix inequalities (LMIs), which guarantees the sliding mode robust asymptotically stable and has a noise attenuation level γ in an H∞ sense. The admissible state feedback controller can be found by solving a sequential minimization problem subject to LMI constraints by applying the cone complementary linearization method. This design scheme combines the strong robustness of the sliding mode control with the H∞ norm performance. A numerical example is given to illustrate the effectiveness of the proposed scheme.
基金supported by the National Natural Science Foundation of China(607404306646087403160904060)
文摘The problem of robust H_∞ control for uncertain neutral stochastic systems with time-varying delay is discussed.The parameter uncertaintie is assumed to be time varying norm-bounded.First,the stochastic robust stabilization of the stochastic system without disturbance input is investigated by nonlinear matrix inequality method.Then,a full-order stochastic dynamic output feedback controller is designed by solving a bilinear matrix inequality(BMI),which ensures a prescribed stochastic robust H_∞ performance level for the resulting closed-loop system with nonzero disturbance input and for all admissible uncertainties.An illustrative example is provided to show the feasibility of the controller and the potential of the proposed technique.
基金theNational+4 种基金 Natural Science Foundation of China
文摘In the paper, the problem of H∞ decentralized state feedback control for largescale systems is described. An algorithm is proposed which uses the method of a feasible direction matrix. The algorithm only requires the solution of an algebraic Riccati equation (ARE) and makes the H∞norm of the closedloop transfer function matrix from disturbance inputs to controlled outputs less than a given constant which ensure the stability of the overall controlled system at each iteration. The given example shows that the convergence of the algorithm is satisfactory.
文摘This paper studies the robust stochastic stabilization and robust H∞ control for linear time-delay systems with both Markovian jump parameters and unknown norm-bounded parameter uncertainties. This problem can be solved on the basis of stochastic Lyapunov approach and linear matrix inequality (LMI) technique. Sufficient conditions for the existence of stochastic stabilization and robust H∞ state feedback controller are presented in terms of a set of solutions of coupled LMIs. Finally, a numerical example is included to demonstrate the practicability of the proposed methods.