期刊文献+
共找到218篇文章
< 1 2 11 >
每页显示 20 50 100
Parameters optimization for exponentially weighted moving average control chart using generalized regression neural network
1
作者 梁宗保 《Journal of Chongqing University》 CAS 2006年第3期131-136,共6页
As a useful alternative of Shewhart control chart, exponentially weighted moving average (EWMA) control chat has been applied widely to quality control, process monitoring, forecast, etc. In this paper, a method was... As a useful alternative of Shewhart control chart, exponentially weighted moving average (EWMA) control chat has been applied widely to quality control, process monitoring, forecast, etc. In this paper, a method was introduced for optimal design of EWMA and multivariate EWMA (MEWMA) control charts, in which the optimal parameter pair ( λ, k) or ( λ, h ) was searched by using the generalized regression neural network (GRNN). The results indicate that the optimal parameter pair can be obtained effectively by the proposed strategy for a given in-control average running length (ARLo) and shift to detect under any conditions, removing the drawback of incompleteness existing in the tables that had been reported. 展开更多
关键词 parameter optimization exponentially weighted moving average control chart generalized regression neural network
在线阅读 下载PDF
基于FFA-GRNN模型的土石坝溃坝洪峰流量预测
2
作者 严新军 王雪虎 +3 位作者 赵蕊婷 庄培源 王红徐 马俊玲 《长江科学院院报》 北大核心 2025年第3期99-106,共8页
为提高溃坝洪峰流量预测精度,提出了一种基于GRNN的预测模型,结合耳廓狐优化算法FFA进行超参数优化,实现对溃坝洪峰流量的预测。以国内外堤坝溃决数据库为基础,用溃口底部以上库容、溃口底部以上水深和溃口深度3种因子作为输入变量,构建... 为提高溃坝洪峰流量预测精度,提出了一种基于GRNN的预测模型,结合耳廓狐优化算法FFA进行超参数优化,实现对溃坝洪峰流量的预测。以国内外堤坝溃决数据库为基础,用溃口底部以上库容、溃口底部以上水深和溃口深度3种因子作为输入变量,构建FFA-GRNN溃坝洪峰流量预测模型。为验证模型在溃坝洪峰流量预测精确度和拟合度,与其他4种智能算法进行对比。结果表明:提出的FFA-GRNN模型相较于其他模型具有更低的RMSE、MAE和更高的拟合度R^(2),证明所建模型在整体上具有更好的计算精度与拟合效果。通过分析模型在溃坝洪峰流量预测中的适用性,可为溃坝分析提供技术支撑。 展开更多
关键词 溃坝 洪峰流量 土石坝 耳廓狐算法 广义回归神经网络
在线阅读 下载PDF
Term Structure of Interest Rates Based on Artificial Neural Network
3
作者 姜德峰 杜子平 《Journal of Southwest Jiaotong University(English Edition)》 2007年第4期338-343,共6页
In light of the nonlinear approaching capability of artificial neural networks ( ANN), the term structure of interest rates is predicted using The generalized regression neural network (GRNN) and back propagation ... In light of the nonlinear approaching capability of artificial neural networks ( ANN), the term structure of interest rates is predicted using The generalized regression neural network (GRNN) and back propagation (BP) neural networks models. The prediction performance is measured with US interest rate data. Then, RBF and BP models are compared with Vasicek's model and Cox-Ingersoll-Ross (CIR) model. The comparison reveals that neural network models outperform Vasicek's model and CIR model, which are more precise and closer to the real market situation. 展开更多
关键词 neural network Interest rate Term structure generalized regression neural network
在线阅读 下载PDF
基于SSA-GRNN的汽油机过渡工况进气流量预测研究
4
作者 陈侗 李岳林 +2 位作者 张五龙 谢清华 尹钰屹 《汽车技术》 CSCD 北大核心 2024年第12期54-62,共9页
针对过渡工况下汽油机进气流量预测难度较高的问题,构建了一种基于麻雀搜索算法(SSA)优化广义回归神经网络(GRNN)的进气流量预测模型。该模型利用SSA算法对GRNN的平滑因子进行寻优辨识,并采用斯皮尔曼法和对比分析法提取模型的特征参数... 针对过渡工况下汽油机进气流量预测难度较高的问题,构建了一种基于麻雀搜索算法(SSA)优化广义回归神经网络(GRNN)的进气流量预测模型。该模型利用SSA算法对GRNN的平滑因子进行寻优辨识,并采用斯皮尔曼法和对比分析法提取模型的特征参数,以达到较好的预测精度和泛化性能。运用过渡工况进气流量样本数据对模型进行训练和预测,结果表明:在加减速工况下,SSA-GRNN模型预测值的平均相对误差均小于1%;相较于BP、RBF和GA-SVR进气流量预测模型,SSA-GRNN模型具有更高的预测精度和泛化性能,更加适用于汽油机过渡工况进气流量的预测。 展开更多
关键词 汽油机 麻雀搜索算法 寻优辨识 广义回归神经网络 进气流量 过渡工况
在线阅读 下载PDF
基于PSO-GRNN的含钛高炉渣活化焙烧浸出成分预测模型 被引量:1
5
作者 张宁 何茂琪 方文 《中国矿业》 北大核心 2024年第S01期453-459,468,共8页
活化焙烧是一种回收利用含钛高炉渣中钛资源的新方法。为通过反应条件快速获得回收渣中成分含量,建立了基于粒子群优化的广义回归神经网络(PSO-GRNN)预测模型。借助斯皮尔曼(Spearman)相关性分析筛选特征变量作为模型输入,利用PSO优化G... 活化焙烧是一种回收利用含钛高炉渣中钛资源的新方法。为通过反应条件快速获得回收渣中成分含量,建立了基于粒子群优化的广义回归神经网络(PSO-GRNN)预测模型。借助斯皮尔曼(Spearman)相关性分析筛选特征变量作为模型输入,利用PSO优化GRNN神经网络的权重与节点阈值,通过与偏最小二乘回归(PLS)、随机森林(RF)以及支持向量回归(SVR)算法的对比,确定了提出模型的优势。研究结果表明,PSO-GRNN具有最小的RMSE和最大的R2,表明在该数据集上所设计的PSO-GRNN有最佳的模型性能,可以为后续实验或工业应用提供一定的指导。 展开更多
关键词 广义回归神经网络 粒子群优化 回归模型 含钛高炉渣 活化焙烧
在线阅读 下载PDF
基于PSO-GRNN的大跨桥梁有限元模型修正方法
6
作者 周红利 周广东 +1 位作者 刘凯凯 奚佳欢 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2024年第6期1489-1495,共7页
为了对大跨桥梁的有限元模型进行高精度修正,提出了一种基于粒子群算法-广义回归神经网络(PSO-GRNN)的方法.该方法采用广义回归神经网络(GRNN)来描述有限元模型输出与待修正参数之间的复杂非线性映射关系,利用粒子群(PSO)算法对GRNN的... 为了对大跨桥梁的有限元模型进行高精度修正,提出了一种基于粒子群算法-广义回归神经网络(PSO-GRNN)的方法.该方法采用广义回归神经网络(GRNN)来描述有限元模型输出与待修正参数之间的复杂非线性映射关系,利用粒子群(PSO)算法对GRNN的光滑因子进行优化.采用一座大跨钢箱梁悬索桥的有限元模型对提出的修正方法进行了验证.研究结果表明:经过PSO优化后的GRNN能够更加准确地描述频率-待修正参数之间的非线性关系,预测误差显著减小;相比于误差反向传播(BP)神经网络方法,GRNN方法和PSO-GRNN方法修正后的频率误差更小;由于PSO的优化,PSO-GRNN方法修正后的频率误差进一步减小,最大误差不超过5%;基于PSO-GRNN的修正方法可广泛用于各种大跨桥梁有限元模型的修正. 展开更多
关键词 大跨桥梁 有限元模型 模型修正 广义回归神经网络 粒子群算法
在线阅读 下载PDF
基于GRNN网络和遗传算法的旋翼动平衡调整 被引量:10
7
作者 刘红梅 王少萍 欧阳平超 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2008年第5期507-511,共5页
针对传统旋翼调整方法没有考虑调整参数与振动信号之间的非线性关系,提出一种结合广义回归神经网络GRNN(General Regression Neural Network)和遗传算法的旋翼调整方法,采用GRNN建立旋翼动平衡调整模型,以桨叶调整参数作为GRNN输入,以... 针对传统旋翼调整方法没有考虑调整参数与振动信号之间的非线性关系,提出一种结合广义回归神经网络GRNN(General Regression Neural Network)和遗传算法的旋翼调整方法,采用GRNN建立旋翼动平衡调整模型,以桨叶调整参数作为GRNN输入,以旋翼转轴3个方向的加速度测量值和机身3个方向加速度测量值作为网络输出,建立调整参数与直升机振动信号之间的模型.以直升机振动作为目标函数,采用改进的遗传算法对桨叶调整参数进行寻优,获得直升机振动最小时的桨叶的调整量.飞行实验表明,通过1到2次飞行调整,可使3个方向机身振动(旋翼的一阶振动)为最小,完成旋翼的动平衡调整. 展开更多
关键词 旋翼 动平衡 广义回归神经网络(grnn) 遗传算法 优化
在线阅读 下载PDF
GRNN神经网络在矿区地表变形预测中的应用 被引量:9
8
作者 高彩云 崔希民 +1 位作者 高宁 洪雪倩 《金属矿山》 CAS 北大核心 2014年第3期97-100,共4页
针对矿区地表变形预测受多种因素影响的复杂性、非线性等特点,基于新型广义回归神经网络(GRNN),构建了矿区地表变形预测模型。首先,介绍了GRNN的建模原理,并对影响GRNN网络预测的关键因素进行了讨论;其次,为了提高网络的泛化能力及预测... 针对矿区地表变形预测受多种因素影响的复杂性、非线性等特点,基于新型广义回归神经网络(GRNN),构建了矿区地表变形预测模型。首先,介绍了GRNN的建模原理,并对影响GRNN网络预测的关键因素进行了讨论;其次,为了提高网络的泛化能力及预测精度,采用滚动建模方式对网络进行建模训练,并基于最小均方误差原理提出了交叉验证搜索算法对GRNN网络预测关键参数平滑因子SPREAD进行优选;最后,将优化后的GRNN网络应用于某矿区地表变形预测,并与LM-BP、RBF、回归分析3种模型的预测效果进行了比较,结果表明,GRNN网络泛化能力强、算法稳定,且预测精度较高,适合于矿区地表变形预测。 展开更多
关键词 矿区地表变形 grnn神经网络 滚动建模 交叉验证 预测
在线阅读 下载PDF
基于GRNN的多故障自适应电力系统故障诊断 被引量:30
9
作者 廖志伟 叶青华 +1 位作者 王钢 文福拴 《华南理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2005年第9期6-9,共4页
为了实现快速而准确的电网故障诊断,利用广义回归神经网络(GRNN)在逼近能力、分类能力和学习速度方面的优势,建立了基于GRNN的电网故障诊断模型.仿真分析表明:在输入信息因干扰而畸变的情况下,文中所构造的模型能够快速、正确地实现电... 为了实现快速而准确的电网故障诊断,利用广义回归神经网络(GRNN)在逼近能力、分类能力和学习速度方面的优势,建立了基于GRNN的电网故障诊断模型.仿真分析表明:在输入信息因干扰而畸变的情况下,文中所构造的模型能够快速、正确地实现电网的故障诊断;在电网拓扑结构改变的情况下,该模型也具有良好的自适应能力. 展开更多
关键词 电力系统 故障诊断 广义回归神经网络 自适应能力
在线阅读 下载PDF
基于RFOA优化GRNN的水电机组振动预测 被引量:11
10
作者 王继选 胡润志 +3 位作者 管一 张少恺 曹庆皎 王利英 《振动与冲击》 EI CSCD 北大核心 2021年第21期120-126,共7页
针对水电机组振动的非平稳、非线性特点,提出利用改进果蝇算法(RFOA)优化广义回归神经网络模型(RFOA-GRNN)。通过改进果蝇算法的搜索步长和气味浓度判定公式,使该算法的局部寻优能力增强,收敛速度提高。通过8种常用的基准函数对FOA算法... 针对水电机组振动的非平稳、非线性特点,提出利用改进果蝇算法(RFOA)优化广义回归神经网络模型(RFOA-GRNN)。通过改进果蝇算法的搜索步长和气味浓度判定公式,使该算法的局部寻优能力增强,收敛速度提高。通过8种常用的基准函数对FOA算法、DSFOA算法、RFOA算法进行仿真测试,测试结果验证了RFOA算法的有效性。利用三种优化算法优化GRNN的平滑因子,将优化后平滑因子代入GRNN模型对水电机组振动进行预测。结果表明,与FOA-GRNN和DSFOA-GRNN两种预测模型相比,RFOA-GRNN预测模型的预测结果最大相对误差分别降低了99.96%和99.28%。可以得到RFOA-GRNN模型的预测精度和稳定性方面均优于其他两种模型,验证了此模型的有效性。将其应用于水电机组状态趋势预测研究中,可为维护人员提前发现水电机组故障并及时检修进而保证水电机组安全稳定的运行提供保障。 展开更多
关键词 水电机组 改进果蝇优化算法(RFOA) 广义回归神经网络(grnn) 平滑因子 振动预测
在线阅读 下载PDF
基于SSPSO优化GRNN的水电站厂房结构振动响应预测 被引量:7
11
作者 徐国宾 韩文文 王海军 《振动与冲击》 EI CSCD 北大核心 2015年第4期104-109,共6页
提出基于优胜劣汰、步步选择的粒子群优化算法(SSPSO),弥补了一般粒子群优化算法容易陷入局部极值、早熟收敛或停滞的缺陷。并运用SSPSO对广义回归神经网络(GRNN)平滑参数P进行优化,充分利用SSPSO寻优能力强及径向基函数调整参数少的优... 提出基于优胜劣汰、步步选择的粒子群优化算法(SSPSO),弥补了一般粒子群优化算法容易陷入局部极值、早熟收敛或停滞的缺陷。并运用SSPSO对广义回归神经网络(GRNN)平滑参数P进行优化,充分利用SSPSO寻优能力强及径向基函数调整参数少的优点,建立厂房结构的振动响应预测模型,对某厂顶溢流式水电站的厂坝结构振动响应问题展开预测研究。通过分析预测效果得出:与一般的粒子群算法相比,所提出的SSPSO算法的寻优能力得到了很大的提高。与此同时,基于SSPSO优化的广义回归神经网络(SSPSO-GRNN)与其他网络相比,在预测精度、收敛性能、泛化能力等各个方面得到了很大提升。为水电站厂房振动响应预测提供了新的方法和思路,为增强厂房结构的智能化监测提供了保障。 展开更多
关键词 水工结构 厂房振动 优胜劣汰 步步选择粒子群优化算法 广义回归神经网络
在线阅读 下载PDF
GRNN神经网络在坝基渗流预测中的应用 被引量:10
12
作者 陈端 曹阳 +2 位作者 夏辉 梅一韬 仲云飞 《人民黄河》 CAS 北大核心 2012年第10期118-119,123,共3页
人工神经网络在大坝监测资料分析及预测中应用效果良好,而广义回归神经网络具有柔性网络结构、很强的非线性映射能力及高度的容错性,非常适合解决非线性问题。实例分析结果表明:与BP神经网络相比,广义回归神经网络在预测能力及学习速度... 人工神经网络在大坝监测资料分析及预测中应用效果良好,而广义回归神经网络具有柔性网络结构、很强的非线性映射能力及高度的容错性,非常适合解决非线性问题。实例分析结果表明:与BP神经网络相比,广义回归神经网络在预测能力及学习速度上具有明显优势,且样本较少时其预测效果也较好。 展开更多
关键词 广义回归神经网络 渗流预测 BP神经网络 坝基渗流
在线阅读 下载PDF
基于GRNN网络的苏州市水资源承载能力评价 被引量:10
13
作者 张杰 陆宝宏 +4 位作者 李莉会 刘蕊蕊 常娜 许丹 翟梦恩 《水资源保护》 CAS 2013年第2期43-47,共5页
基于最严格的水资源管理制度和水资源承载能力的内涵,重新确定水资源承载能力评价的指标体系,构建广义回归神经网络(GRNN)水资源承载能力评价模型,应用于苏州市水资源承载能力评价,并将评价结果与采用模糊综合评价的结果进行比较。结果... 基于最严格的水资源管理制度和水资源承载能力的内涵,重新确定水资源承载能力评价的指标体系,构建广义回归神经网络(GRNN)水资源承载能力评价模型,应用于苏州市水资源承载能力评价,并将评价结果与采用模糊综合评价的结果进行比较。结果表明:两种评价结果相符;结合用水总量控制、用水效率控制和限制纳污所建立的指标体系更加科学、更加符合经济社会的发展需求;苏州市水资源承载能力状况由2004年之前的较低水平逐渐恢复,这种变化与苏州市经济增长模式的转变和产业结构的调整密切相关。 展开更多
关键词 水资源承载能力 广义回归神经网络 指标体系 苏州市
在线阅读 下载PDF
GRNN在边坡稳定预测分析中的应用 被引量:10
14
作者 狄圣杰 李晓敏 魏樯 《水利水电科技进展》 CSCD 北大核心 2011年第3期80-83,共4页
介绍广义回归神经网络(GRNN)的原理和影响因素,论述光滑因子的影响和选择。采用LOO交叉验证方法遍历所有样本,搜索出合适的光滑因子,结果表明合适的光滑因子能够较大幅度地提高网络泛化能力。应用收集到的82个圆弧滑面边坡稳定状态的实... 介绍广义回归神经网络(GRNN)的原理和影响因素,论述光滑因子的影响和选择。采用LOO交叉验证方法遍历所有样本,搜索出合适的光滑因子,结果表明合适的光滑因子能够较大幅度地提高网络泛化能力。应用收集到的82个圆弧滑面边坡稳定状态的实例资料,将GRNN模型应用于边坡稳定性评价,计算结果表明,在边坡稳定状态分析及预测方面,GRNN模型比BPNN模型更加精准简捷。 展开更多
关键词 广义回归神经网络 光滑因子 边坡稳定预测
在线阅读 下载PDF
基于遗传-GRNN在深基坑地连墙测斜预测中的研究 被引量:15
15
作者 王雨 刘国彬 屠传豹 《岩土工程学报》 EI CAS CSCD 北大核心 2012年第S1期167-171,共5页
基坑工程由于受多种因素的影响,目前已成为岩土工程中的重点和难点。在基坑工程施工中,需要根据现场实际情况、周围环境、建筑安全等级等对变形进行严格控制。通过现场监测的深基坑围护结构变形信息资料,对实测数据进行整理和分析,利用... 基坑工程由于受多种因素的影响,目前已成为岩土工程中的重点和难点。在基坑工程施工中,需要根据现场实际情况、周围环境、建筑安全等级等对变形进行严格控制。通过现场监测的深基坑围护结构变形信息资料,对实测数据进行整理和分析,利用神经网络对围护结构的变形做出预测的智能化施工成为基坑工程的发展趋势之一。研究了一种基于遗传算法的广义回归神经网络学习算法。该算法运用遗传算法寻找广义回归神经网络唯一参数光滑因子的最优解,将最优解赋予广义回归神经网络进行预测。在时间序列预测中,工程实例计算证明了遗传–广义回归神经网络预测的有效性和可行性,为时间序列预测提供了一种新途径。 展开更多
关键词 深基坑 地下连续墙 变形预测 遗传算法 广义回归神经网络
在线阅读 下载PDF
基于果蝇优化算法的GRNN模型在边坡稳定预测中的应用 被引量:17
16
作者 王海军 涂凯 闫晓荣 《水电能源科学》 北大核心 2015年第1期124-126,144,共4页
鉴于边坡系统是一个复杂的多因素影响的非线性系统,综合考虑边坡的物理状态和环境因素,采用了一种基于果蝇优化算法(FOA)的广义回归神经网络(GRNN)模型(FOAGRNN)预测边坡的稳定状态,并与BP神经网络预测模型结果进行比较。结果表明,FOAG... 鉴于边坡系统是一个复杂的多因素影响的非线性系统,综合考虑边坡的物理状态和环境因素,采用了一种基于果蝇优化算法(FOA)的广义回归神经网络(GRNN)模型(FOAGRNN)预测边坡的稳定状态,并与BP神经网络预测模型结果进行比较。结果表明,FOAGRNN预测的精度较高,基本反映了边坡稳定的真实状态。 展开更多
关键词 边坡稳定 果蝇优化算法 广义回归神经网络 预测
在线阅读 下载PDF
基于GRNN的人机交互下遥操作力预测方法 被引量:5
17
作者 熊鹏文 雷耀 李鸣 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2018年第6期1130-1136,共7页
为了解决人机交互作业时操作人员不能准确感知末端接触力信息的问题,提出了一种基于GRNN信息融合的方法.基于主动端的力反馈手控器和从动端的遥操作机器人,搭建实验操作平台,以人为中心构建整个系统,同步采集手控器的姿态信号、手臂肌... 为了解决人机交互作业时操作人员不能准确感知末端接触力信息的问题,提出了一种基于GRNN信息融合的方法.基于主动端的力反馈手控器和从动端的遥操作机器人,搭建实验操作平台,以人为中心构建整个系统,同步采集手控器的姿态信号、手臂肌电信号以及末端机器人的速度、加速度和接触力信息训练GRNN,并将GRNN得到的预测力与真实力进行比较.结果显示,采用纸盒和泡沫板2种不同材料进行穿刺实验的均方误差值分别为0. 24和0. 16,泡沫板进行穿刺和切割2种不同作业得到的均方误差值分别为0. 16和0. 13,从而证明了所提方法的有效性. 展开更多
关键词 遥操作系统 人机交互 信息融合 grnn
在线阅读 下载PDF
基于EEMD和GRNN的降水量序列预测研究 被引量:8
18
作者 黄春艳 韩志伟 +4 位作者 畅建霞 王志良 柳闪 丁皖豫 王影 《人民黄河》 CAS 北大核心 2017年第5期26-28,共3页
为提高非平稳性、非线性降水序列的预测精度,利用基于集合经验模态分解和广义神经网络的预测模型对郑州市1951—2011年的年降水量序列进行了分析。结果表明:集合经验模态分解减弱了经验模态分解IMF分量的模态混叠现象,提高了广义神经网... 为提高非平稳性、非线性降水序列的预测精度,利用基于集合经验模态分解和广义神经网络的预测模型对郑州市1951—2011年的年降水量序列进行了分析。结果表明:集合经验模态分解减弱了经验模态分解IMF分量的模态混叠现象,提高了广义神经网络的预测精度;相对于经验模态分解的广义神经网络和传统的ARMA方法,基于集合经验模态分解的广义神经网络的预测结果更加精确,具有收敛速度快及预测精度高等特点。 展开更多
关键词 ARMA 广义神经网络 集合经验模态分解 降水预测
在线阅读 下载PDF
基于RS-PSO-GRNN的埋地管道土壤腐蚀预测 被引量:14
19
作者 骆正山 王文辉 +1 位作者 王小完 张新生 《材料保护》 CAS CSCD 北大核心 2018年第8期47-52,79,共7页
为克服埋地管道土壤腐蚀因素间的复杂性及传统方法预测精度低、适用性差等缺陷,提出基于粗糙集(RS)和改进粒子群算法(PSO)融合广义回归神经网络(GRNN)的埋地管道土壤腐蚀预测模型。通过属性约简,提取影响管道土壤腐蚀的主要因素,将其结... 为克服埋地管道土壤腐蚀因素间的复杂性及传统方法预测精度低、适用性差等缺陷,提出基于粗糙集(RS)和改进粒子群算法(PSO)融合广义回归神经网络(GRNN)的埋地管道土壤腐蚀预测模型。通过属性约简,提取影响管道土壤腐蚀的主要因素,将其结果作为GRNN的输入,运用改进的PSO优化GRNN的参数,构建预测模型,并以中俄原油管道为例,进行土壤腐蚀实证分析。结果表明,与标准PSO相比,改进PSO的迭代收敛速度更快,稳定性更好,且该模型预测效果优于常规的误差反向传播(BP)模型和粗糙集融合支持向量机(RS-SVM)模型,为埋地管道土壤腐蚀研究提供了新思路,具有较好的借鉴意义。 展开更多
关键词 土壤腐蚀 埋地管道 粗糙集理论 粒子群算法 广义回归神经网络
在线阅读 下载PDF
混沌噪声背景下弱谐波信号的GRNN检测 被引量:5
20
作者 林红波 祁放 +1 位作者 邓小英 李月 《吉林大学学报(信息科学版)》 CAS 2004年第3期209-213,共5页
针对BP(BackPropagation)神经网络方法存在训练时间长,收敛性能不理想;RBF(RadialBasisFunction)神经网络的隐层结构对鲁棒性影响大的问题,将广义回归神经网络GRNN(GeneralizationRegressionNeuralNetwork)引入混沌背景下的弱谐波信号... 针对BP(BackPropagation)神经网络方法存在训练时间长,收敛性能不理想;RBF(RadialBasisFunction)神经网络的隐层结构对鲁棒性影响大的问题,将广义回归神经网络GRNN(GeneralizationRegressionNeuralNetwork)引入混沌背景下的弱谐波信号检测中,提出了一种提取混沌噪声背景下微弱谐波信号的GRNN检测方法。该方法利用GRNN建立噪声混沌背景的最优一步预测模型,再结合频域处理预测误差提取微弱信号,以Duffing系统产生混沌时序作为混沌背景,使用该方法用MATLAB6.1验证在没有噪声、存在高斯白噪声和存在色噪声情况下的混沌背景下的弱谐波信号检测。实验结果表明,谐波对混沌的信噪比达到-36dB时仍然可以检测出谐波。 展开更多
关键词 混沌 广义回归神经网络 微弱信号检测 重构吸引子
在线阅读 下载PDF
上一页 1 2 11 下一页 到第
使用帮助 返回顶部