摘要
基坑工程由于受多种因素的影响,目前已成为岩土工程中的重点和难点。在基坑工程施工中,需要根据现场实际情况、周围环境、建筑安全等级等对变形进行严格控制。通过现场监测的深基坑围护结构变形信息资料,对实测数据进行整理和分析,利用神经网络对围护结构的变形做出预测的智能化施工成为基坑工程的发展趋势之一。研究了一种基于遗传算法的广义回归神经网络学习算法。该算法运用遗传算法寻找广义回归神经网络唯一参数光滑因子的最优解,将最优解赋予广义回归神经网络进行预测。在时间序列预测中,工程实例计算证明了遗传–广义回归神经网络预测的有效性和可行性,为时间序列预测提供了一种新途径。
基坑工程由于受多种因素的影响,目前已成为岩土工程中的重点和难点。在基坑工程施工中,需要根据现场实际情况、周围环境、建筑安全等级等对变形进行严格控制。通过现场监测的深基坑围护结构变形信息资料,对实测数据进行整理和分析,利用神经网络对围护结构的变形做出预测的智能化施工成为基坑工程的发展趋势之一。研究了一种基于遗传算法的广义回归神经网络学习算法。该算法运用遗传算法寻找广义回归神经网络唯一参数光滑因子的最优解,将最优解赋予广义回归神经网络进行预测。在时间序列预测中,工程实例计算证明了遗传–广义回归神经网络预测的有效性和可行性,为时间序列预测提供了一种新途径。
出处
《岩土工程学报》
EI
CAS
CSCD
北大核心
2012年第S1期167-171,共5页
Chinese Journal of Geotechnical Engineering
关键词
深基坑
地下连续墙
变形预测
遗传算法
广义回归神经网络
deep excavation
diaphragm wall
deformation prediction
genetic algorithm
generalized regression neural network