期刊文献+

基于遗传-GRNN在深基坑地连墙测斜预测中的研究 被引量:15

Deformation prediction for deep excavations based on genetic algorithms-GRNN
在线阅读 下载PDF
导出
摘要 基坑工程由于受多种因素的影响,目前已成为岩土工程中的重点和难点。在基坑工程施工中,需要根据现场实际情况、周围环境、建筑安全等级等对变形进行严格控制。通过现场监测的深基坑围护结构变形信息资料,对实测数据进行整理和分析,利用神经网络对围护结构的变形做出预测的智能化施工成为基坑工程的发展趋势之一。研究了一种基于遗传算法的广义回归神经网络学习算法。该算法运用遗传算法寻找广义回归神经网络唯一参数光滑因子的最优解,将最优解赋予广义回归神经网络进行预测。在时间序列预测中,工程实例计算证明了遗传–广义回归神经网络预测的有效性和可行性,为时间序列预测提供了一种新途径。 基坑工程由于受多种因素的影响,目前已成为岩土工程中的重点和难点。在基坑工程施工中,需要根据现场实际情况、周围环境、建筑安全等级等对变形进行严格控制。通过现场监测的深基坑围护结构变形信息资料,对实测数据进行整理和分析,利用神经网络对围护结构的变形做出预测的智能化施工成为基坑工程的发展趋势之一。研究了一种基于遗传算法的广义回归神经网络学习算法。该算法运用遗传算法寻找广义回归神经网络唯一参数光滑因子的最优解,将最优解赋予广义回归神经网络进行预测。在时间序列预测中,工程实例计算证明了遗传–广义回归神经网络预测的有效性和可行性,为时间序列预测提供了一种新途径。
出处 《岩土工程学报》 EI CAS CSCD 北大核心 2012年第S1期167-171,共5页 Chinese Journal of Geotechnical Engineering
关键词 深基坑 地下连续墙 变形预测 遗传算法 广义回归神经网络 deep excavation diaphragm wall deformation prediction genetic algorithm generalized regression neural network
  • 相关文献

参考文献7

二级参考文献30

共引文献131

同被引文献147

引证文献15

二级引证文献64

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部