The main goal of this paper is to investigate natural convective heat transfer and flow characteristics of non-Newtonian nanofluid streaming between two infinite vertical flat plates in the presence of magnetic field ...The main goal of this paper is to investigate natural convective heat transfer and flow characteristics of non-Newtonian nanofluid streaming between two infinite vertical flat plates in the presence of magnetic field and thermal radiation.Initially,a similarity transformation is used to convert momentum and energy conservation equations in partial differential forms into non-linear ordinary differential equations (ODE) applying meaningful boundary conditions.In order to obtain the non-linear ODEs analytically,Galerkin method (GM) is employed.Subsequently,the ODEs are also solved by a reliable numerical solution.In order to test the accuracy,precision and reliability of the analytical method,results of the analytical analysis are compared with the numerical results.With respect to the comparisons,fairly good compatibilities with insignificant errors are observed.Eventually,the impacts of effective parameters including magnetic and radiation parameters and nanofluid volume fraction on the velocity,skin friction coefficient and Nusselt number distributions are comprehensively described.Based on the results,it is revealed that with increasing the role of magnetic force,velocity profile,skin friction coefficient and thermal performance descend.Radiation parameter has insignificant influence on velocity profile while it obviously has augmentative and decreasing effects on skin friction and Nusselt number,respectively.展开更多
In order to discuss the buckling stability of super-long rock-socketed filling piles widely used in bridge engineering in soft soil area such as Dongting Lake, the second stability type was adopted instead of traditio...In order to discuss the buckling stability of super-long rock-socketed filling piles widely used in bridge engineering in soft soil area such as Dongting Lake, the second stability type was adopted instead of traditional first type, and a newly invented numerical analysis method, i.e. the element-free Galerkin method (EFGM), was introduced to consider the non-concordant deformation and nonlinearity of the pile-soil interface. Then, based on the nonlinear elastic-ideal plastic pile-soil interface model, a nonlinear iterative algorithm was given to analyze the pile-soil interaction, and a program for buckling analysis of piles by the EFGM (PBAP-EFGM) and arc length method was worked out as well. The application results in an engineering example show that, the shape of pile top load-settlement curve obtained by the program agrees well with the measured one, of which the difference may be caused mainly by those uncertain factors such as possible initial defects of pile shaft and the eccentric loading during the test process. However, the calculated critical load is very close with the measured ultimate load of the test pile, and the corresponding relative error is only 5.6%, far better than the calculated values by linear and nonlinear incremental buckling analysis (with a greater relative error of 37.0% and 15.4% respectively), which also verifies the rationality and feasibility of the present method.展开更多
An element-free Galerkin method(EFGM) is used to solve the two-dimensional(2D) ground penetrating radar(GPR)modelling problems, due to its simple pre-processing, the absence of elements and high accuracy. Different fr...An element-free Galerkin method(EFGM) is used to solve the two-dimensional(2D) ground penetrating radar(GPR)modelling problems, due to its simple pre-processing, the absence of elements and high accuracy. Different from element-based numerical methods, this approach makes nodes free from the elemental restraint and avoids the explicit mesh discretization. First, we derived the boundary value problem for the 2D GPR simulation problems. Second, a penalty function approach and a boundary condition truncated method were used to enforce the essential and the absorbing boundary conditions, respectively. A three-layered GPR model was used to verify our element-free approach. The numerical solutions show that our solutions have an excellent agreement with solutions of a finite element method(FEM). Then, we used the EFGM to simulate one more complex model to show its capability and limitations. Simulation results show that one obvious advantage of EFGM is the absence of element mesh, which makes the method very flexible. Due to the use of MLS fitting, a key feature of EFM, is that both the dependent variable and its gradient are continuous and have high precision.展开更多
The element-free method is a new numerical technique presented in recent years.It uses the moving least square(MLS) approximation as its shape function,and it is determined by the basic function and weight function.Th...The element-free method is a new numerical technique presented in recent years.It uses the moving least square(MLS) approximation as its shape function,and it is determined by the basic function and weight function.The weight function is the mainly determining factor,so it greatly affects the accuracy of the computational results.The element-free Galerkin method(EFGM) was applied for the solution to plastic large deformation.The simulation of metal rheological forming was successfully done by programming and its results were visualized by using the plotting and data analyses software Tecplot.Then plastic strain under different stages during rheological forming and the three principal stresses at the last deformation were obtained.The example shows the feasibility of EFGM used for metal rheological forming and provides a new method for numerical simulation of rheological forming of complex parts.展开更多
With the development of long range missile early warning radar,MMW phased array antenna is strongly needed. The phase shifter (PS) with high power capability and low insertion loss is a key technology in this kind of ...With the development of long range missile early warning radar,MMW phased array antenna is strongly needed. The phase shifter (PS) with high power capability and low insertion loss is a key technology in this kind of radar. Ferrite dielectric waveguide is introduced in this paper to manufacture PS,the cross section can be enlarged to 4 times of that of the conventional PS,which facilitates the engineering realization with reduced insertion loss. A novel vector base function of Galerkin method is proposed in calculating the eigenvalue of ferrite dielectric waveguide. The field distribution of main mode,power density and efficiency of 94 GHz difference phase shifter are also given.展开更多
文摘The main goal of this paper is to investigate natural convective heat transfer and flow characteristics of non-Newtonian nanofluid streaming between two infinite vertical flat plates in the presence of magnetic field and thermal radiation.Initially,a similarity transformation is used to convert momentum and energy conservation equations in partial differential forms into non-linear ordinary differential equations (ODE) applying meaningful boundary conditions.In order to obtain the non-linear ODEs analytically,Galerkin method (GM) is employed.Subsequently,the ODEs are also solved by a reliable numerical solution.In order to test the accuracy,precision and reliability of the analytical method,results of the analytical analysis are compared with the numerical results.With respect to the comparisons,fairly good compatibilities with insignificant errors are observed.Eventually,the impacts of effective parameters including magnetic and radiation parameters and nanofluid volume fraction on the velocity,skin friction coefficient and Nusselt number distributions are comprehensively described.Based on the results,it is revealed that with increasing the role of magnetic force,velocity profile,skin friction coefficient and thermal performance descend.Radiation parameter has insignificant influence on velocity profile while it obviously has augmentative and decreasing effects on skin friction and Nusselt number,respectively.
基金Project(50378036) supported by the National Natural Science Foundation of China
文摘In order to discuss the buckling stability of super-long rock-socketed filling piles widely used in bridge engineering in soft soil area such as Dongting Lake, the second stability type was adopted instead of traditional first type, and a newly invented numerical analysis method, i.e. the element-free Galerkin method (EFGM), was introduced to consider the non-concordant deformation and nonlinearity of the pile-soil interface. Then, based on the nonlinear elastic-ideal plastic pile-soil interface model, a nonlinear iterative algorithm was given to analyze the pile-soil interaction, and a program for buckling analysis of piles by the EFGM (PBAP-EFGM) and arc length method was worked out as well. The application results in an engineering example show that, the shape of pile top load-settlement curve obtained by the program agrees well with the measured one, of which the difference may be caused mainly by those uncertain factors such as possible initial defects of pile shaft and the eccentric loading during the test process. However, the calculated critical load is very close with the measured ultimate load of the test pile, and the corresponding relative error is only 5.6%, far better than the calculated values by linear and nonlinear incremental buckling analysis (with a greater relative error of 37.0% and 15.4% respectively), which also verifies the rationality and feasibility of the present method.
基金Project(41074085)supported by the National Natural Science Foundation of ChinaProject(NCET-12-0551)supported by the Funds for New Century Excellent Talents in University,ChinaProject supported by Shenghua Yuying Program of Central South University,China
文摘An element-free Galerkin method(EFGM) is used to solve the two-dimensional(2D) ground penetrating radar(GPR)modelling problems, due to its simple pre-processing, the absence of elements and high accuracy. Different from element-based numerical methods, this approach makes nodes free from the elemental restraint and avoids the explicit mesh discretization. First, we derived the boundary value problem for the 2D GPR simulation problems. Second, a penalty function approach and a boundary condition truncated method were used to enforce the essential and the absorbing boundary conditions, respectively. A three-layered GPR model was used to verify our element-free approach. The numerical solutions show that our solutions have an excellent agreement with solutions of a finite element method(FEM). Then, we used the EFGM to simulate one more complex model to show its capability and limitations. Simulation results show that one obvious advantage of EFGM is the absence of element mesh, which makes the method very flexible. Due to the use of MLS fitting, a key feature of EFM, is that both the dependent variable and its gradient are continuous and have high precision.
基金Key project(02103) supported by National Education Department of ChinaKey project(02A008) supported by the Education Department of Hunan Province,China+3 种基金Project(2005090) supported by Central South University of Forestry and TechnologyProject(03JJY3007) supported by the Natural Science Foundation of Hunan Province,ChinaProject supported by the Rewarding Project for Excellent PhD Thesis of Hunan Province,ChinaProject(07031B) supported by Scientific Research Fund of Central South University of Forestry and Technology
文摘The element-free method is a new numerical technique presented in recent years.It uses the moving least square(MLS) approximation as its shape function,and it is determined by the basic function and weight function.The weight function is the mainly determining factor,so it greatly affects the accuracy of the computational results.The element-free Galerkin method(EFGM) was applied for the solution to plastic large deformation.The simulation of metal rheological forming was successfully done by programming and its results were visualized by using the plotting and data analyses software Tecplot.Then plastic strain under different stages during rheological forming and the three principal stresses at the last deformation were obtained.The example shows the feasibility of EFGM used for metal rheological forming and provides a new method for numerical simulation of rheological forming of complex parts.
文摘With the development of long range missile early warning radar,MMW phased array antenna is strongly needed. The phase shifter (PS) with high power capability and low insertion loss is a key technology in this kind of radar. Ferrite dielectric waveguide is introduced in this paper to manufacture PS,the cross section can be enlarged to 4 times of that of the conventional PS,which facilitates the engineering realization with reduced insertion loss. A novel vector base function of Galerkin method is proposed in calculating the eigenvalue of ferrite dielectric waveguide. The field distribution of main mode,power density and efficiency of 94 GHz difference phase shifter are also given.