Artificial neural networks(ANNs)are a core component of artificial intelligence and are frequently used in machine learning.In this report,we investigate the use of ANNs to recover the saturated signals acquired in hi...Artificial neural networks(ANNs)are a core component of artificial intelligence and are frequently used in machine learning.In this report,we investigate the use of ANNs to recover the saturated signals acquired in highenergy particle and nuclear physics experiments.The inherent properties of the detector and hardware imply that particles with relatively high energies probably often generate saturated signals.Usually,these saturated signals are discarded during data processing,and therefore,some useful information is lost.Thus,it is worth restoring the saturated signals to their normal form.The mapping from a saturated signal waveform to a normal signal waveform constitutes a regression problem.Given that the scintillator and collection usually do not form a linear system,typical regression methods such as multi-parameter fitting are not immediately applicable.One important advantage of ANNs is their capability to process nonlinear regression problems.To recover the saturated signal,three typical ANNs were tested including backpropagation(BP),simple recurrent(Elman),and generalized radial basis function(GRBF)neural networks(NNs).They represent a basic network structure,a network structure with feedback,and a network structure with a kernel function,respectively.The saturated waveforms were produced mainly by the environmental gamma in a liquid scintillation detector for the China Dark Matter Detection Experiment(CDEX).The training and test data sets consisted of 6000 and 3000 recordings of background radiation,respectively,in which saturation was simulated by truncating each waveform at 40%of the maximum signal.The results show that the GBRF-NN performed best as measured using a Chi-squared test to compare the original and reconstructed signals in the region in which saturation was simulated.A comparison of the original and reconstructed signals in this region shows that the GBRF neural network produced the best performance.This ANN demonstrates a powerful efficacy in terms of solving the saturation recovery problem.The proposed method outlines new ideas and possibilities for the recovery of saturated signals in high-energy particle and nuclear physics experiments.This study also illustrates an innovative application of machine learning in the analysis of experimental data in particle physics.展开更多
The air cooler is an important equipment in the petroleum refining industry.Ammonium chloride(NH4 Cl)deposition-induced corrosion is one of its main failure forms.In this study,the ammonium salt crystallization temper...The air cooler is an important equipment in the petroleum refining industry.Ammonium chloride(NH4 Cl)deposition-induced corrosion is one of its main failure forms.In this study,the ammonium salt crystallization temperature is chosen as the key decision variable of NH4 Cl deposition-induced corrosion through in-depth mechanism research and experimental analysis.The functional link neural network(FLNN)is adopted as the basic algorithm for modeling because of its advantages in dealing with non-linear problems and its fast-computational ability.A hybrid FLNN attached to a small norm is built to improve the generalization performance of the model.Then,the trained model is used to predict the NH4 Cl salt crystallization temperature in the air cooler of a sour water stripper plant.Experimental results show the proposed improved FLNN algorithm can achieve better generalization performance than the PLS,the back propagation neural network,and the conventional FLNN models.展开更多
This paper presents a method used to the numeral eddy current sensor modelling based on the genetic neural network to settle its nonlinear problem. The principle and algorithms of genetic neural network are introduced...This paper presents a method used to the numeral eddy current sensor modelling based on the genetic neural network to settle its nonlinear problem. The principle and algorithms of genetic neural network are introduced. In this method, the nonlinear model parameters of the numeral eddy current sensor are optimized by genetic neural network (GNN) according to measurement data. So the method remains both the global searching ability of genetic algorithm and the good local searching ability of neural network. The nonlinear model has the advantages of strong robustness, on-line modelling and high precision. The maximum nonlinearity error can be reduced to 0.037% by using GNN. However, the maximum nonlinearity error is 0.075% using the least square method.展开更多
Accurate prediction of the rate of penetration(ROP)is significant for drilling optimization.While the intelligent ROP prediction model based on fully connected neural networks(FNN)outperforms traditional ROP equations...Accurate prediction of the rate of penetration(ROP)is significant for drilling optimization.While the intelligent ROP prediction model based on fully connected neural networks(FNN)outperforms traditional ROP equations and machine learning algorithms,its lack of interpretability undermines its credibility.This study proposes a novel interpretation and characterization method for the FNN ROP prediction model using the Rectified Linear Unit(ReLU)activation function.By leveraging the derivative of the ReLU function,the FNN function calculation process is transformed into vector operations.The FNN model is linearly characterized through further simplification,enabling its interpretation and analysis.The proposed method is applied in ROP prediction scenarios using drilling data from three vertical wells in the Tarim Oilfield.The results demonstrate that the FNN ROP prediction model with ReLU as the activation function performs exceptionally well.The relative activation frequency curve of hidden layer neurons aids in analyzing the overfitting of the FNN ROP model and determining drilling data similarity.In the well sections with similar drilling data,averaging the weight parameters enables linear characterization of the FNN ROP prediction model,leading to the establishment of a corresponding linear representation equation.Furthermore,the quantitative analysis of each feature's influence on ROP facilitates the proposal of drilling parameter optimization schemes for the current well section.The established linear characterization equation exhibits high precision,strong stability,and adaptability through the application and validation across multiple well sections.展开更多
The design of a turbofan rotor speed control system, using model reference adaptive control(MRAC) method with input and output measurements, is discussed for the purpose of practical application. The nonlinear compe...The design of a turbofan rotor speed control system, using model reference adaptive control(MRAC) method with input and output measurements, is discussed for the purpose of practical application. The nonlinear compensator based on functional link neural network is used to deal with the engine nonlinearity and the hardware-in-loop simulation is also developed. The results show that the nonlinear MRAC controller has the adequate performance of compensating and adapting nonlinearity arising from the change of engine state or working environment. Such feature demonstrates potential practical applications of MRAC for aeroengine control system.展开更多
基金supported by the ‘‘Detection of very low-flux background neutrons in China Jinping Underground Laboratory’’ project of the National Natural Science Foundation of China(No.11275134)
文摘Artificial neural networks(ANNs)are a core component of artificial intelligence and are frequently used in machine learning.In this report,we investigate the use of ANNs to recover the saturated signals acquired in highenergy particle and nuclear physics experiments.The inherent properties of the detector and hardware imply that particles with relatively high energies probably often generate saturated signals.Usually,these saturated signals are discarded during data processing,and therefore,some useful information is lost.Thus,it is worth restoring the saturated signals to their normal form.The mapping from a saturated signal waveform to a normal signal waveform constitutes a regression problem.Given that the scintillator and collection usually do not form a linear system,typical regression methods such as multi-parameter fitting are not immediately applicable.One important advantage of ANNs is their capability to process nonlinear regression problems.To recover the saturated signal,three typical ANNs were tested including backpropagation(BP),simple recurrent(Elman),and generalized radial basis function(GRBF)neural networks(NNs).They represent a basic network structure,a network structure with feedback,and a network structure with a kernel function,respectively.The saturated waveforms were produced mainly by the environmental gamma in a liquid scintillation detector for the China Dark Matter Detection Experiment(CDEX).The training and test data sets consisted of 6000 and 3000 recordings of background radiation,respectively,in which saturation was simulated by truncating each waveform at 40%of the maximum signal.The results show that the GBRF-NN performed best as measured using a Chi-squared test to compare the original and reconstructed signals in the region in which saturation was simulated.A comparison of the original and reconstructed signals in this region shows that the GBRF neural network produced the best performance.This ANN demonstrates a powerful efficacy in terms of solving the saturation recovery problem.The proposed method outlines new ideas and possibilities for the recovery of saturated signals in high-energy particle and nuclear physics experiments.This study also illustrates an innovative application of machine learning in the analysis of experimental data in particle physics.
基金supported by the National Natural Science Foundation of China(Grant No.51876194,U1909216)the China Petrochemical Corporation Research Project(318023-2)the Zhejiang Public Welfare Technology Research Project(LGG20F030007)。
文摘The air cooler is an important equipment in the petroleum refining industry.Ammonium chloride(NH4 Cl)deposition-induced corrosion is one of its main failure forms.In this study,the ammonium salt crystallization temperature is chosen as the key decision variable of NH4 Cl deposition-induced corrosion through in-depth mechanism research and experimental analysis.The functional link neural network(FLNN)is adopted as the basic algorithm for modeling because of its advantages in dealing with non-linear problems and its fast-computational ability.A hybrid FLNN attached to a small norm is built to improve the generalization performance of the model.Then,the trained model is used to predict the NH4 Cl salt crystallization temperature in the air cooler of a sour water stripper plant.Experimental results show the proposed improved FLNN algorithm can achieve better generalization performance than the PLS,the back propagation neural network,and the conventional FLNN models.
基金Project supported by the Natural Science Foundation of the Higher Education Institutions of Jiangsu Province,Chinathe Foundation of Huaiyin Teachers College Professor,China(Grant Nos07KJD510027 and 06HSJS020)
文摘This paper presents a method used to the numeral eddy current sensor modelling based on the genetic neural network to settle its nonlinear problem. The principle and algorithms of genetic neural network are introduced. In this method, the nonlinear model parameters of the numeral eddy current sensor are optimized by genetic neural network (GNN) according to measurement data. So the method remains both the global searching ability of genetic algorithm and the good local searching ability of neural network. The nonlinear model has the advantages of strong robustness, on-line modelling and high precision. The maximum nonlinearity error can be reduced to 0.037% by using GNN. However, the maximum nonlinearity error is 0.075% using the least square method.
基金The authors greatly thanked the financial support from the National Key Research and Development Program of China(funded by National Natural Science Foundation of China,No.2019YFA0708300)the Strategic Cooperation Technology Projects of CNPC and CUPB(funded by China National Petroleum Corporation,No.ZLZX2020-03)+1 种基金the National Science Fund for Distinguished Young Scholars(funded by National Natural Science Foundation of China,No.52125401)Science Foundation of China University of Petroleum,Beijing(funded by China University of petroleum,Beijing,No.2462022SZBH002).
文摘Accurate prediction of the rate of penetration(ROP)is significant for drilling optimization.While the intelligent ROP prediction model based on fully connected neural networks(FNN)outperforms traditional ROP equations and machine learning algorithms,its lack of interpretability undermines its credibility.This study proposes a novel interpretation and characterization method for the FNN ROP prediction model using the Rectified Linear Unit(ReLU)activation function.By leveraging the derivative of the ReLU function,the FNN function calculation process is transformed into vector operations.The FNN model is linearly characterized through further simplification,enabling its interpretation and analysis.The proposed method is applied in ROP prediction scenarios using drilling data from three vertical wells in the Tarim Oilfield.The results demonstrate that the FNN ROP prediction model with ReLU as the activation function performs exceptionally well.The relative activation frequency curve of hidden layer neurons aids in analyzing the overfitting of the FNN ROP model and determining drilling data similarity.In the well sections with similar drilling data,averaging the weight parameters enables linear characterization of the FNN ROP prediction model,leading to the establishment of a corresponding linear representation equation.Furthermore,the quantitative analysis of each feature's influence on ROP facilitates the proposal of drilling parameter optimization schemes for the current well section.The established linear characterization equation exhibits high precision,strong stability,and adaptability through the application and validation across multiple well sections.
文摘The design of a turbofan rotor speed control system, using model reference adaptive control(MRAC) method with input and output measurements, is discussed for the purpose of practical application. The nonlinear compensator based on functional link neural network is used to deal with the engine nonlinearity and the hardware-in-loop simulation is also developed. The results show that the nonlinear MRAC controller has the adequate performance of compensating and adapting nonlinearity arising from the change of engine state or working environment. Such feature demonstrates potential practical applications of MRAC for aeroengine control system.