为研究鲜猪肉在不同储藏温度下主要腐败菌及其总挥发性盐基氮(TVB-N)含量随时间的变化规律,找出其变化函数模型。选取(-3±0.5)、(0±0.5)、(4±0.5)、(10±0.5)℃四个储藏温度组,每组设置0、10、20、34、48、72、96 h ...为研究鲜猪肉在不同储藏温度下主要腐败菌及其总挥发性盐基氮(TVB-N)含量随时间的变化规律,找出其变化函数模型。选取(-3±0.5)、(0±0.5)、(4±0.5)、(10±0.5)℃四个储藏温度组,每组设置0、10、20、34、48、72、96 h 7个不同的储藏时间,测定鲜猪肉细菌菌落总数、大肠杆菌等6个微生物指标和TVB-N含量,对各指标的时间序列值在4个储藏温度组间进行配对T检验,并建立Logistic生长曲线函数模型。结果表明:不同储藏温度组鲜猪肉各指标间存在极显著差异;各指标在不同储藏温度下与自变量时间t的Logistic生长曲线函数的决定系数R2均大于0.9;以总挥发性盐基氮含量为指标,得出理论上(0±0.5)℃储藏不超过76 h的为鲜猪肉,超过76 h不超过121 h的为次鲜肉。综合分析,鲜猪肉建议(0±0.5)℃储藏为宜,储藏时间不超过121 h。研究结果可为鲜猪肉储藏保鲜提供参考。展开更多
On a compact Riemann surface with finite punctures P_(1),…P_(k),we define toric curves as multivalued,totallyunramified holomorphic maps to P^(n)with monodromy in a maximal torus of PSU(n+1).Toric solutions to SU(n+1...On a compact Riemann surface with finite punctures P_(1),…P_(k),we define toric curves as multivalued,totallyunramified holomorphic maps to P^(n)with monodromy in a maximal torus of PSU(n+1).Toric solutions to SU(n+1)Todasystems on X\{P_(1);…;P_(k)}are recognized by the associated toric curves in.We introduce character n-ensembles as-tuples of meromorphic one-forms with simple poles and purely imaginary periods,generating toric curves on minus finitelymany points.On X,we establish a correspondence between character-ensembles and toric solutions to the SU(n+1)system with finitely many cone singularities.Our approach not only broadens seminal solutions with two conesingularities on the Riemann sphere,as classified by Jost-Wang(Int.Math.Res.Not.,2002,(6):277-290)andLin-Wei-Ye(Invent.Math.,2012,190(1):169-207),but also advances beyond the limits of Lin-Yang-Zhong’s existencetheorems(J.Differential Geom.,2020,114(2):337-391)by introducing a new solution class.展开更多
基金supported by the National Natural Science Foundation of China(11931009,12271495,11971450,and 12071449)Anhui Initiative in Quantum Information Technologies(AHY150200)the Project of Stable Support for Youth Team in Basic Research Field,Chinese Academy of Sciences(YSBR-001).
文摘On a compact Riemann surface with finite punctures P_(1),…P_(k),we define toric curves as multivalued,totallyunramified holomorphic maps to P^(n)with monodromy in a maximal torus of PSU(n+1).Toric solutions to SU(n+1)Todasystems on X\{P_(1);…;P_(k)}are recognized by the associated toric curves in.We introduce character n-ensembles as-tuples of meromorphic one-forms with simple poles and purely imaginary periods,generating toric curves on minus finitelymany points.On X,we establish a correspondence between character-ensembles and toric solutions to the SU(n+1)system with finitely many cone singularities.Our approach not only broadens seminal solutions with two conesingularities on the Riemann sphere,as classified by Jost-Wang(Int.Math.Res.Not.,2002,(6):277-290)andLin-Wei-Ye(Invent.Math.,2012,190(1):169-207),but also advances beyond the limits of Lin-Yang-Zhong’s existencetheorems(J.Differential Geom.,2020,114(2):337-391)by introducing a new solution class.