Let x∈(0,1)be a real number with continued fraction expansion[a_(1)(x),a_(2)(x),a_(3)(x),⋯].This paper is concerned with the multifractal spectrum of the convergence exponent of{a_(n)(x)}_(n≥1) defined by τ(x):=in...Let x∈(0,1)be a real number with continued fraction expansion[a_(1)(x),a_(2)(x),a_(3)(x),⋯].This paper is concerned with the multifractal spectrum of the convergence exponent of{a_(n)(x)}_(n≥1) defined by τ(x):=inf{s≥0:∑n≥1an^(-s)(x)<∞}.展开更多
基金This research was supported by National Natural Science Foundation of China(11771153,11801591,11971195,12171107)Guangdong Natural Science Foundation(2018B0303110005)+1 种基金Guangdong Basic and Applied Basic Research Foundation(2021A1515010056)Kunkun Song would like to thank China Scholarship Council(CSC)for financial support(201806270091).
文摘Let x∈(0,1)be a real number with continued fraction expansion[a_(1)(x),a_(2)(x),a_(3)(x),⋯].This paper is concerned with the multifractal spectrum of the convergence exponent of{a_(n)(x)}_(n≥1) defined by τ(x):=inf{s≥0:∑n≥1an^(-s)(x)<∞}.