Objective INF2 is a member of the formins family.Abnormal expression and regulation of INF2 have been associated with the progression of various tumors,but the expression and role of INF2 in hepatocellular carcinoma(H...Objective INF2 is a member of the formins family.Abnormal expression and regulation of INF2 have been associated with the progression of various tumors,but the expression and role of INF2 in hepatocellular carcinoma(HCC)remain unclear.HCC is a highly lethal malignant tumor.Given the limitations of traditional treatments,this study explored the expression level,clinical value and potential mechanism of INF2 in HCC in order to seek new therapeutic targets.Methods In this study,we used public databases to analyze the expression of INF2 in pan-cancer and HCC,as well as the impact of INF2 expression levels on HCC prognosis.Quantitative real time polymerase chain reaction(RT-qPCR),Western blot,and immunohistochemistry were used to detect the expression level of INF2 in liver cancer cells and human HCC tissues.The correlation between INF2 expression and clinical pathological features was analyzed using public databases and clinical data of human HCC samples.Subsequently,the effects of INF2 expression on the biological function and Drp1 phosphorylation of liver cancer cells were elucidated through in vitro and in vivo experiments.Finally,the predictive value and potential mechanism of INF2 in HCC were further analyzed through database and immunohistochemical experiments.Results INF2 is aberrantly high expression in HCC samples and the high expression of INF2 is correlated with overall survival,liver cirrhosis and pathological differentiation of HCC patients.The expression level of INF2 has certain diagnostic value in predicting the prognosis and pathological differentiation of HCC.In vivo and in vitro HCC models,upregulated expression of INF2 triggers the proliferation and migration of the HCC cell,while knockdown of INF2 could counteract this effect.INF2 in liver cancer cells may affect mitochondrial division by inducing Drp1 phosphorylation and mediate immune escape by up-regulating PD-L1 expression,thus promoting tumor progression.Conclusion INF2 is highly expressed in HCC and is associated with poor prognosis.High expression of INF2 may promote HCC progression by inducing Drp1 phosphorylation and up-regulation of PD-L1 expression,and targeting INF2 may be beneficial for HCC patients with high expression of INF2.展开更多
The xylitol dehydrogenase(XDH)is a crucial enzyme involved in the xylose utilization in pentose⁃catabolizing yeasts and fungi.In addition to producing xylulose,XDH can also be employed to develop a biosensor for monit...The xylitol dehydrogenase(XDH)is a crucial enzyme involved in the xylose utilization in pentose⁃catabolizing yeasts and fungi.In addition to producing xylulose,XDH can also be employed to develop a biosensor for monitoring xylitol concentration.In this study,the gene encoding the thermophilic fungus Talaromyces emersonii XDH(TeXDH)was heterologously expressed in Escherichia coli BL21(DE3)at 16℃in the soluble form.Recombinant TeXDH with high purity was purified by using a Ni⁃NTA affinity column.Size⁃exclusion chromatography and SDS⁃PAGE analysis demonstrated that the puri⁃fied recombinant TeXDH exists as a native trimer with a molecular mass of approximately 116 kD,and is composed of three identical subunits,each with a molecular weight of around 39 kD.The TeXDH strictly preferred NAD^(+)as a coenzyme to NADP^(+).The optimal temperature and pH of the TeXDH were 40℃and 10.0,respectively.After EDTA treatment,the enzyme activity of TeXDH decreased to 43.26%of the initial enzyme activity,while the divalent metal ions Mg^(2+)or Ca^(2+)could recover the enzyme activity of TeXDH,reaching 103.32%and 110.69%of the initial enzyme activity,respectively,making them the optimal divalent metal ion cofactors for TeXDH enzyme.However,the divalent metal ions of Mn^(2+),Ni^(2+),Cu^(2+),Zn^(2+),Co^(2+),and Cd^(2+)significantly inhibited the activity of TeXDH.ICP⁃MS and molecular doc⁃king studies revealed that 1 mol/L of TeXDH bound 2 mol/L Zn^(2+)ions and 1 mol/L Mg^(2+)ion.Further⁃more,TeXDH exhibited a high specificity for xylitol,laying the foundation for the development of future xylitol biosensors.展开更多
Background Photosystem II(PSII)constitutes an intricate assembly of protein pigments,featuring extrinsic and intrinsic polypeptides within the photosynthetic membrane.The low-molecular-weight transmembrane protein Psb...Background Photosystem II(PSII)constitutes an intricate assembly of protein pigments,featuring extrinsic and intrinsic polypeptides within the photosynthetic membrane.The low-molecular-weight transmembrane protein PsbX has been identified in PSII,which is associated with the oxygen-evolving complex.The expression of PsbX gene protein is regulated by light.PsbX’s central role involves the regulation of PSII,facilitating the binding of quinone molecules to the Qb(PsbA)site,and it additionally plays a crucial role in optimizing the efficiency of photosynthesis.Despite these insights,a comprehensive understanding of the PsbX gene’s functions has remained elusive.Results In this study,we identified ten PsbX genes in Gossypium hirsutum L.The phylogenetic analysis results showed that 40 genes from nine species were classified into one clade.The resulting sequence logos exhibited substantial conservation across the N and C terminals at multiple sites among all Gossypium species.Furthermore,the ortholo-gous/paralogous,Ka/Ks ratio revealed that cotton PsbX genes subjected to positive as well as purifying selection pressure might lead to limited divergence,which resulted in the whole genome and segmental duplication.The expression patterns of GhPsbX genes exhibited variations across specific tissues,as indicated by the analysis.Moreover,the expression of GhPsbX genes could potentially be regulated in response to salt,intense light,and drought stresses.Therefore,GhPsbX genes may play a significant role in the modulation of photosynthesis under adverse abiotic conditions.Conclusion We examined the structure and function of PsbX gene family very first by using comparative genom-ics and systems biology approaches in cotton.It seems that PsbX gene family plays a vital role during the growth and development of cotton under stress conditions.Collectively,the results of this study provide basic information to unveil the molecular and physiological function of PsbX genes of cotton plants.展开更多
ABC immunoperoxidase was used to test the effects of rhTGF-β1 and rhGM-CSF on receptor expressions in J6-1 and J6-2 leukemic cell lines. Computer assisted image analysis system was introduced to evaluate positive ind...ABC immunoperoxidase was used to test the effects of rhTGF-β1 and rhGM-CSF on receptor expressions in J6-1 and J6-2 leukemic cell lines. Computer assisted image analysis system was introduced to evaluate positive index of time-and dose-dependent specimens. The expression of c-kit was elevated both in positive rate and positive index by TGF-01 in both time- and dose-dependent manners. Ing/ml rhTGF-β1 simultaneously enhanced the expression of c-fms and PDGF-R which is not detected in 50 ng / ml GM-CSF treatment. Endoglin was down-regulated after TGF-β treatment and up-regulated in J6-2 cells after GM-CSF treatment, c-kit Expression was elevated by TGF-β in J6-1 cells while decreased by both in J6-2 cells.展开更多
Facial expression recognition is a hot topic in computer vision, but it remains challenging due to the feature inconsistency caused by person-specific 'characteristics of facial expressions. To address such a chal...Facial expression recognition is a hot topic in computer vision, but it remains challenging due to the feature inconsistency caused by person-specific 'characteristics of facial expressions. To address such a challenge, and inspired by the recent success of deep identity network (DeepID-Net) for face identification, this paper proposes a novel deep learning based framework for recognising human expressions with facial images. Compared to the existing deep learning methods, our proposed framework, which is based on multi-scale global images and local facial patches, can significantly achieve a better performance on facial expression recognition. Finally, we verify the effectiveness of our proposed framework through experiments on the public benchmarking datasets JAFFE and extended Cohn-Kanade (CK+).展开更多
Lactobacillus was selected as a bacterial carrier for expression of N-lobe of porcine lactoferrin (PLFN). A pair of primers was designed with Oligo6.0 and used to amplify PLFN gene. It was in accordance with the cha...Lactobacillus was selected as a bacterial carrier for expression of N-lobe of porcine lactoferrin (PLFN). A pair of primers was designed with Oligo6.0 and used to amplify PLFN gene. It was in accordance with the characters of translational fusions from gene and expression vector plasmid. A 1 077 bp fragment of the gene from PLF was cloned from mammary gland tissue of the lactating sow on the third day by RT-PCR; the gene was connected with the vector plasmid pPG612.1 and transformed into the host strain JM109. The recombinant expression vector plasmid pPG612-PLFN was created and identified by using plasmid extraction, PCR, restriction enzyme digestion and sequence analysis. The recombinant plasmid was transformed into Lactobacillus casei ATCC393, Lactobacillus plantarum KLDS 1.0344, Lactobacillus paracasei KLDS 1.0652 and Lactobacillus pentosus KLDS 1.0413 by electroporation, and produced the recombinant strains of pPG612-PLFN/L, casei, pPG612-PLFN/L, plantarum, pPG612-PLFN/ L. paracasei and pPG612-PLFN/L, pentosus, respectively. The results indicated that PLFN gene had inserted into the expression vectors and achieved multiple Laetobacillus expression systems. It electes the base for the expression and production of recombinant porcine lactoferrin in Lactobaeillus展开更多
ObjectiveTo investigate the gene expression changes in normal and degeneration lumbar intervertebral disc in humans, providing information for clinical. MethodsThe PCR products of 4096 human genes were spotted onto a ...ObjectiveTo investigate the gene expression changes in normal and degeneration lumbar intervertebral disc in humans, providing information for clinical. MethodsThe PCR products of 4096 human genes were spotted onto a kind of chemical-material-coated-glass slides. The total RNAs were isolated from the tissues. Both the mRNAs from the degeneration and normal lumbar intervertebral disc in humans were reversely transcribed to the cDNAs, which used as the hybridization probes with the incorporations of fluorescent dUTP. The mixed probes were then hybridized to the cDNA microarray. After high-stringent washing, the cDNA microarray was scanned for the fluorescent signals and analyzed with computer image analysis. ResultsAmong the 4096 targets, there were 706 genes whose expression levels differed between the degeneration and normal lumbar intervertebral disc in all cases, comprising 298 up-regulated and 358 down-regulated ones. ConclusionDNA microarray technology is an effective technique in screening for differently expressed genes between the degeneration and normal lumbar intervertebral disc. Cell apoptosis plays an important role in the process of lumbar intervertebral disc degeneration.展开更多
According to the sequence of the bile salt hydrolase (BSH) gene of Bifidobacterium and the restriction enzyme cutting sites of expression vector pNZ8148, primers were designed and the bile salt hydrolase (BSH) gen...According to the sequence of the bile salt hydrolase (BSH) gene of Bifidobacterium and the restriction enzyme cutting sites of expression vector pNZ8148, primers were designed and the bile salt hydrolase (BSH) gene was gotten from Bacillus bifidus ATCC 29521 by PCR. BSH gene was inserted into lactic acid bacteria expression vector pNZ8148 to construct the recombinant pNZ8148-BSH. The recombinant pNZ8148-BSH was transferred into lactic acid bacteria NZ9000 with electrotransformation method. And the recombinant which could express BSH protein was obtained. It was identified by SDS-PAGE electrophoresis and activity verification. The result could provide a rationale reference for expressing BSH in lactic acid bacteria.展开更多
Antimicrobial peptides are widely distributed in nature,existing in organisms of plants,insects,and vertebrates.It has been approved that antimicrobial peptides have broad spectrum antimicrobial activities,and play a ...Antimicrobial peptides are widely distributed in nature,existing in organisms of plants,insects,and vertebrates.It has been approved that antimicrobial peptides have broad spectrum antimicrobial activities,and play a key modulatory role in the innate immune response and tumor inhibiting activity.Due to the special action mechanism,the antimicrobial peptides become a hot field of genetic engineering.In the present paper,the general properties,mechanism of action,application value,existing problems,the latest progress and the expression strategy were discussed.展开更多
Methionine and lysine are restrictive essential amino acids of livestock, they are also the most attentive indexes in the feed production to carry out the quality control and quality evaluation. Their contents in feed...Methionine and lysine are restrictive essential amino acids of livestock, they are also the most attentive indexes in the feed production to carry out the quality control and quality evaluation. Their contents in feed directly affect livestock protein synthesis. Bacillus natto has excellent probiotic properties. In this experiment, we used the genetic engineering method, fusion PCR technique, to connect methionine-rich gene (zein) from maize endosperm protein with lysine-rich gene (Cflr) from the pepper anther, then the fusion gene was inserted into the expression vector pHT43, and the recombinant plasmid pHT43/zein-Cflr was constructed. The recombinant plasmid was transferred into Bacillus natto, and induced by IPTG for the expression of the fusion gene. We found an apparent band at 40 ku site for the recombinant strain by SDS-PAGE. The contents of methionine and lysine were individually detected with HPLC, the quantities of methionine and lysine in the recombinant strain increased by 18.37% and 24.68% than the wild one, respectively. We also verified the stability of the recombinant bacterium during passaging, and found the stability was 100%. This study provided research-basis for the application of the recombined Bacillus natto as feed additive.展开更多
We cloned and expressed bile salt hydrolase gene ofLactobacillus plantarum M1-UVS29 in Lactococcus lactis NZ9000 successfully. Gene-specific primers for amplification of L. plantarum bsh were designed by using sequenc...We cloned and expressed bile salt hydrolase gene ofLactobacillus plantarum M1-UVS29 in Lactococcus lactis NZ9000 successfully. Gene-specific primers for amplification of L. plantarum bsh were designed by using sequence which availabled from GenBank. The production of PCR amplicon was confirmed by sequencing and cloned into pMD18-T vector, and then recombined into expression vector pNZ8148 and yielding vector pNZ8148-BSH, pNZ8148-BSH was transferred into Lactococcus lactis NZ9000. Sequencing indicated that the cloned bsh fragment contained 995 nucleotides, and shared 99.3% sequence homology with bsh gene from L. plantarum MBUL10. Cloned bsh fragment was successfully transduced into NICE expression system and confirmed by PCR and restriction digest. Recombinant BSH protein was analyzed by SDS-PAGE. The molecular weight of BSH protein was approximately 37 ku. Activity of the expressed protein was 0.77 μmol· min^-1. The successfully expressed proteins by genetic engineering technology made the function of lactic acid bacteria be abundant and laid the foundation for further researches into cholesterol-lowering lactic acid bacterium food and probiotics.展开更多
It’s very necessary to study the translation of figurative expressions from English into Chinese since two languages differ a lot in lexical,syntactic and cultural aspects.In terms of translation approaches there are...It’s very necessary to study the translation of figurative expressions from English into Chinese since two languages differ a lot in lexical,syntactic and cultural aspects.In terms of translation approaches there are three ones largely used depending on different situations: literal translation from English into Chinese,translation from figurative expressions into figurative ones and translation from figurative expressions into nonfigurative ones.展开更多
Background:INDETERMINATE DOMAIN(IDD)transcription factors form one of the largest and most conserved gene families in plant kingdom and play important roles in various processes of plant growth and development,such as...Background:INDETERMINATE DOMAIN(IDD)transcription factors form one of the largest and most conserved gene families in plant kingdom and play important roles in various processes of plant growth and development,such as flower induction in term of flowering control.Till date,systematic and functional analysis of IDD genes remained infancy in cotton.Results:In this study,we identified total of 162 IDD genes from eight different plant species including 65 IDD genes in Gossypium hirsutum.Phylogenetic analysis divided IDDs genes into seven well distinct groups.The gene structures and conserved motifs of GhIDD genes depicted highly conserved exon-intron and protein motif distribution patterns.Gene duplication analysis revealed that among 142 orthologous gene pairs,54 pairs have been derived by segmental duplication events and four pairs by tandem duplication events.Further,Ka/Ks values of most of orthologous/paralogous gene pairs were less than one suggested the purifying selection pressure during evolution.Spatiotemporal expression pattern by qRT-PCR revealed that most of the investigated GhIDD genes showed higher transcript levels in ovule of seven days post anthesis,and upregulated response under the treatments of multiple abiotic stresses.Conclusions:Evolutionary analysis revealed that IDD gene family was highly conserved in plant during the rapid phase of evolution.Whole genome duplication,segmental as well as tandem duplication significantly contributed to the expansion of IDD gene family in upland cotton.Some distinct genes evolved into special subfamily and indicated potential role in the allotetraploidy Gossypium hisutum evolution and development High transcript levels of GhIDD genes in ovules illustrated their potential roles in seed and fiber development Further,upregulated responses of GhIDD genes under the treatments of various abiotic stresses suggested them as important genetic regulators to improve stress resistance in cotton breeding.展开更多
To understand the use of real-time reverse transcription-polymerase chain reaction (real-time RT-PCR) for detecting the relative abundance of mRNA, the expression of a tobacco ferrltin gene (NtFer1) was detected b...To understand the use of real-time reverse transcription-polymerase chain reaction (real-time RT-PCR) for detecting the relative abundance of mRNA, the expression of a tobacco ferrltin gene (NtFer1) was detected by Northern blot and real-time RT-PCR. The results indicated that both of the two methods were able to detect mRNA expression of NtFer1 cleady and similady, namely NtFer1 expression was responsive to iron-ovedoad, and the abundance of NtFer1 mRNA was greatly increased after iron loaded for 6 h. To compare the effect and sensitivity of two methods, results revealed that Northern blot need 30 μg of total RNA and at least 3 days for the total protocol performance, whereas real-time RT-PCR only need 2 μg of total RNA and 1.5 h. The real-time RT-PCR is rather sensitive and effective than Northern blot. Real-time RT-PCR analysis can be used to rapidly detect the relative abundance of mRNA expression instead of Northern blot analysis.展开更多
Background: The SWEET (Sugars will eventually be exported transporters) gene family plays multiple roles in plant physiological activities and development process. It participates in reproductive development and in...Background: The SWEET (Sugars will eventually be exported transporters) gene family plays multiple roles in plant physiological activities and development process. It participates in reproductive development and in the process of sugar transport and absorption, plant senescence and stress responses and plant-pathogen interaction. However, thecomprehensive analysis of SWEET genes has not been reported in cotton. Results: In this study, we identified 22, 31, 55 and 60 SWEETgenes from the sequenced genomes of Gossypium orboreum, G. rairnondii, G. hirsutum and G. borbadense, respectively. Phylogenetic tree analysis showed that the SWEET genes could be divided into four groups, which were further classified into 14 sub-clades. Further analysis of chromosomal location, synteny analysis and gene duplication suggested that the orthologs showed a good collinearity and segmental duplication events played a crucial role in the expansion of the family in cotton. Specific MtN3_slv domains were highly conserved between Arabidopsis and cotton by exon-intron organization and motif analysis. In addition, the expression pattern in different tissues indicated that the duplicated genes in cotton might have acquired new functions as a result of sub-functionalization or neo-functionalization. The expression pattern of SWEET genes showed that the different genes were induced by diverse stresses. The identification and functional analysis of SWEET genes in cotton may provide more candidate genes for genetic modification. Conclusion: SWEET genes were classified into four clades in cotton. The expression patterns suggested that the duplicated genes might have experienced a functional divergence. This work provides insights into the evolution of SWEETgenes and more candidates for specific genetic modification, which will be useful in future research.展开更多
A new method to extract person-independent expression feature based on higher-order singular value decomposition (HOSVD) is proposed for facial expression recognition. Based on the assumption that similar persons ha...A new method to extract person-independent expression feature based on higher-order singular value decomposition (HOSVD) is proposed for facial expression recognition. Based on the assumption that similar persons have similar facial expression appearance and shape, the person-similarity weighted expression feature is proposed to estimate the expression feature of test persons. As a result, the estimated expression feature can reduce the influence of individuals caused by insufficient training data, and hence become less person-dependent. The proposed method is tested on Cohn-Kanade facial expression database and Japanese female facial expression (JAFFE) database. Person-independent experimental results show the superiority of the proposed method over the existing methods.展开更多
A critical difference between the right hemisphere hypothesis and valence hypothesis of emotion processing is whether the processing of happy facial expressions is lateralized to the right or left hemisphere. In this ...A critical difference between the right hemisphere hypothesis and valence hypothesis of emotion processing is whether the processing of happy facial expressions is lateralized to the right or left hemisphere. In this study participants from a Chinese sample were asked to classify happy or neutral facial expressions presented either bilaterally in both visual fields or unilaterally in the left visual field(LVF)or right visual field(RVF). They were required to make the speeded responses using either the left or right hand. It was found that for both left and right hand responses, happy(and neutral)expressions presented in the LVF were identified faster than happy(and neutral)expressions presented in the RVF. Bilateral presentation showed no further advantage over LVF presentation. Moreover, left hand responses were generally faster than right hand responses, although this effect was more pronounced for neutral expression. These findings were interpreted as supporting the right hemisphere hypothesis, with happy expression being identified initially by the right hemisphere.展开更多
Background: RING H2 finger E3 ligase (RH2FE3) genes encode cysteine rich proteins that mediate E3 ubiquitin ligase activity and degrade target substrates. The roles of these genes in plant responses to phytohormone...Background: RING H2 finger E3 ligase (RH2FE3) genes encode cysteine rich proteins that mediate E3 ubiquitin ligase activity and degrade target substrates. The roles of these genes in plant responses to phytohormones and abiotic stresses are well documented in various species, but their roles in cotton fiber development are poorly understood. To date, genome wide identification and expression analyses of Gossypium hirsutum RH2FE3 genes have not been reported. Methods: We performed computational identification, structural and phylogenetic analyses, chromosomal distribution analysis and estimated KJKs values of G hirsutum RH2FE3 genes. Orthologous and paralogous gene pairs were identified by all versus all BLASTP searches. We predicted cis regulatory elements and analyzed microarray data sets to generate heatmaps at different development stages. Tissue specific expression in cotton fiber, and hormonal and abiotic stress responses were determined by quantitative real time polymerase chain reaction (qRT PCR) analysis. Results: We investigated 140 G hirsutum, 80 G. orboreum, and evolutionary mechanisms and compared them with orthologs 89 G. roimondii putative RH2FB genes and their in Arobidopsis and rice. A domain based analysis of the G hirsutum RH2FE3 genes predicted conserved signature motifs and gene structures. Chromosomal localization showed the genes were distributed across all G hirsutum chromosomes, and 60 duplication events (4 tandem and 56 segmental duplications) and 98 orthologs were detected, cis elements were detected in the promoter regions of G hirsutum RH2FE3 genes. Microarray data and qRT PCR analyses showed that G hirsutum RH2FE3 genes were strongly correlated with cotton fiber development. Additionally, almost all the (brassinolide, gibberellic acid (GA), indole 3-acetic acid drought, and salt). dentified genes were up regulated in response to phytohormones (IAA), and salicylic acid (SA)) and abiotic stresses (cold, heat, Conclusions: The genome wide identification, comprehensive analysis, and characterization of conserved domains and gene structures, as well as phylogenetic analysis, cis element prediction, and expression profile analysis of G hirsutum RH2FE3 genes and their roles in cotton fiber development and responses to plant hormones and abiotic stresses are reported here for the first time. Our findings will contribute to the genome wide analysis of putative RH2FE3 genes in other species and lay a foundation for future physiological and functional research on G hirsutum RH2FE3 genes.展开更多
Gene expression profiling at early stages(0~2 DPA) of fiber development in Gossypium hirsutum identified a number of transcription factors which were down regulated in fiberless mutants relative to wild type controls...Gene expression profiling at early stages(0~2 DPA) of fiber development in Gossypium hirsutum identified a number of transcription factors which were down regulated in fiberless mutants relative to wild type controls and which could play a role in controlling early fiber development.Chief among these was GhMYB25,a Mixta-like MYB gene.Transgenic GhMYB25-silenced cotton展开更多
文摘Objective INF2 is a member of the formins family.Abnormal expression and regulation of INF2 have been associated with the progression of various tumors,but the expression and role of INF2 in hepatocellular carcinoma(HCC)remain unclear.HCC is a highly lethal malignant tumor.Given the limitations of traditional treatments,this study explored the expression level,clinical value and potential mechanism of INF2 in HCC in order to seek new therapeutic targets.Methods In this study,we used public databases to analyze the expression of INF2 in pan-cancer and HCC,as well as the impact of INF2 expression levels on HCC prognosis.Quantitative real time polymerase chain reaction(RT-qPCR),Western blot,and immunohistochemistry were used to detect the expression level of INF2 in liver cancer cells and human HCC tissues.The correlation between INF2 expression and clinical pathological features was analyzed using public databases and clinical data of human HCC samples.Subsequently,the effects of INF2 expression on the biological function and Drp1 phosphorylation of liver cancer cells were elucidated through in vitro and in vivo experiments.Finally,the predictive value and potential mechanism of INF2 in HCC were further analyzed through database and immunohistochemical experiments.Results INF2 is aberrantly high expression in HCC samples and the high expression of INF2 is correlated with overall survival,liver cirrhosis and pathological differentiation of HCC patients.The expression level of INF2 has certain diagnostic value in predicting the prognosis and pathological differentiation of HCC.In vivo and in vitro HCC models,upregulated expression of INF2 triggers the proliferation and migration of the HCC cell,while knockdown of INF2 could counteract this effect.INF2 in liver cancer cells may affect mitochondrial division by inducing Drp1 phosphorylation and mediate immune escape by up-regulating PD-L1 expression,thus promoting tumor progression.Conclusion INF2 is highly expressed in HCC and is associated with poor prognosis.High expression of INF2 may promote HCC progression by inducing Drp1 phosphorylation and up-regulation of PD-L1 expression,and targeting INF2 may be beneficial for HCC patients with high expression of INF2.
基金湖南省教育厅基金优秀青年项目(No.22B0482)湖南科技大学博士启动基金(No.E51992 and E51993)资助。
文摘The xylitol dehydrogenase(XDH)is a crucial enzyme involved in the xylose utilization in pentose⁃catabolizing yeasts and fungi.In addition to producing xylulose,XDH can also be employed to develop a biosensor for monitoring xylitol concentration.In this study,the gene encoding the thermophilic fungus Talaromyces emersonii XDH(TeXDH)was heterologously expressed in Escherichia coli BL21(DE3)at 16℃in the soluble form.Recombinant TeXDH with high purity was purified by using a Ni⁃NTA affinity column.Size⁃exclusion chromatography and SDS⁃PAGE analysis demonstrated that the puri⁃fied recombinant TeXDH exists as a native trimer with a molecular mass of approximately 116 kD,and is composed of three identical subunits,each with a molecular weight of around 39 kD.The TeXDH strictly preferred NAD^(+)as a coenzyme to NADP^(+).The optimal temperature and pH of the TeXDH were 40℃and 10.0,respectively.After EDTA treatment,the enzyme activity of TeXDH decreased to 43.26%of the initial enzyme activity,while the divalent metal ions Mg^(2+)or Ca^(2+)could recover the enzyme activity of TeXDH,reaching 103.32%and 110.69%of the initial enzyme activity,respectively,making them the optimal divalent metal ion cofactors for TeXDH enzyme.However,the divalent metal ions of Mn^(2+),Ni^(2+),Cu^(2+),Zn^(2+),Co^(2+),and Cd^(2+)significantly inhibited the activity of TeXDH.ICP⁃MS and molecular doc⁃king studies revealed that 1 mol/L of TeXDH bound 2 mol/L Zn^(2+)ions and 1 mol/L Mg^(2+)ion.Further⁃more,TeXDH exhibited a high specificity for xylitol,laying the foundation for the development of future xylitol biosensors.
基金supported by National Natural Science Foundation of China(32060466)Chinese Academy of Agricultural Sciences。
文摘Background Photosystem II(PSII)constitutes an intricate assembly of protein pigments,featuring extrinsic and intrinsic polypeptides within the photosynthetic membrane.The low-molecular-weight transmembrane protein PsbX has been identified in PSII,which is associated with the oxygen-evolving complex.The expression of PsbX gene protein is regulated by light.PsbX’s central role involves the regulation of PSII,facilitating the binding of quinone molecules to the Qb(PsbA)site,and it additionally plays a crucial role in optimizing the efficiency of photosynthesis.Despite these insights,a comprehensive understanding of the PsbX gene’s functions has remained elusive.Results In this study,we identified ten PsbX genes in Gossypium hirsutum L.The phylogenetic analysis results showed that 40 genes from nine species were classified into one clade.The resulting sequence logos exhibited substantial conservation across the N and C terminals at multiple sites among all Gossypium species.Furthermore,the ortholo-gous/paralogous,Ka/Ks ratio revealed that cotton PsbX genes subjected to positive as well as purifying selection pressure might lead to limited divergence,which resulted in the whole genome and segmental duplication.The expression patterns of GhPsbX genes exhibited variations across specific tissues,as indicated by the analysis.Moreover,the expression of GhPsbX genes could potentially be regulated in response to salt,intense light,and drought stresses.Therefore,GhPsbX genes may play a significant role in the modulation of photosynthesis under adverse abiotic conditions.Conclusion We examined the structure and function of PsbX gene family very first by using comparative genom-ics and systems biology approaches in cotton.It seems that PsbX gene family plays a vital role during the growth and development of cotton under stress conditions.Collectively,the results of this study provide basic information to unveil the molecular and physiological function of PsbX genes of cotton plants.
基金Supported by National Natural Sciences Foundation. The abstract of this work was published in Exp Hematol (1994:22:743)
文摘ABC immunoperoxidase was used to test the effects of rhTGF-β1 and rhGM-CSF on receptor expressions in J6-1 and J6-2 leukemic cell lines. Computer assisted image analysis system was introduced to evaluate positive index of time-and dose-dependent specimens. The expression of c-kit was elevated both in positive rate and positive index by TGF-01 in both time- and dose-dependent manners. Ing/ml rhTGF-β1 simultaneously enhanced the expression of c-fms and PDGF-R which is not detected in 50 ng / ml GM-CSF treatment. Endoglin was down-regulated after TGF-β treatment and up-regulated in J6-2 cells after GM-CSF treatment, c-kit Expression was elevated by TGF-β in J6-1 cells while decreased by both in J6-2 cells.
基金supported by the Academy of Finland(267581)the D2I SHOK Project from Digile Oy as well as Nokia Technologies(Tampere,Finland)
文摘Facial expression recognition is a hot topic in computer vision, but it remains challenging due to the feature inconsistency caused by person-specific 'characteristics of facial expressions. To address such a challenge, and inspired by the recent success of deep identity network (DeepID-Net) for face identification, this paper proposes a novel deep learning based framework for recognising human expressions with facial images. Compared to the existing deep learning methods, our proposed framework, which is based on multi-scale global images and local facial patches, can significantly achieve a better performance on facial expression recognition. Finally, we verify the effectiveness of our proposed framework through experiments on the public benchmarking datasets JAFFE and extended Cohn-Kanade (CK+).
基金Supported by National Natural Science Foundation of China (30871809,31072057)Principal Fund of Northeast Agricultural University
文摘Lactobacillus was selected as a bacterial carrier for expression of N-lobe of porcine lactoferrin (PLFN). A pair of primers was designed with Oligo6.0 and used to amplify PLFN gene. It was in accordance with the characters of translational fusions from gene and expression vector plasmid. A 1 077 bp fragment of the gene from PLF was cloned from mammary gland tissue of the lactating sow on the third day by RT-PCR; the gene was connected with the vector plasmid pPG612.1 and transformed into the host strain JM109. The recombinant expression vector plasmid pPG612-PLFN was created and identified by using plasmid extraction, PCR, restriction enzyme digestion and sequence analysis. The recombinant plasmid was transformed into Lactobacillus casei ATCC393, Lactobacillus plantarum KLDS 1.0344, Lactobacillus paracasei KLDS 1.0652 and Lactobacillus pentosus KLDS 1.0413 by electroporation, and produced the recombinant strains of pPG612-PLFN/L, casei, pPG612-PLFN/L, plantarum, pPG612-PLFN/ L. paracasei and pPG612-PLFN/L, pentosus, respectively. The results indicated that PLFN gene had inserted into the expression vectors and achieved multiple Laetobacillus expression systems. It electes the base for the expression and production of recombinant porcine lactoferrin in Lactobaeillus
文摘ObjectiveTo investigate the gene expression changes in normal and degeneration lumbar intervertebral disc in humans, providing information for clinical. MethodsThe PCR products of 4096 human genes were spotted onto a kind of chemical-material-coated-glass slides. The total RNAs were isolated from the tissues. Both the mRNAs from the degeneration and normal lumbar intervertebral disc in humans were reversely transcribed to the cDNAs, which used as the hybridization probes with the incorporations of fluorescent dUTP. The mixed probes were then hybridized to the cDNA microarray. After high-stringent washing, the cDNA microarray was scanned for the fluorescent signals and analyzed with computer image analysis. ResultsAmong the 4096 targets, there were 706 genes whose expression levels differed between the degeneration and normal lumbar intervertebral disc in all cases, comprising 298 up-regulated and 358 down-regulated ones. ConclusionDNA microarray technology is an effective technique in screening for differently expressed genes between the degeneration and normal lumbar intervertebral disc. Cell apoptosis plays an important role in the process of lumbar intervertebral disc degeneration.
基金Supported by 863 Projects (2008AA10Z311)National Science and Technology Support Projects (2009BADB9B06)+1 种基金Started Post-doctoral Research Grant of Heilongjiang Province (LBH-Q07023)Harbin Technological Innovation of Special Funds (2007RFQXN020)
文摘According to the sequence of the bile salt hydrolase (BSH) gene of Bifidobacterium and the restriction enzyme cutting sites of expression vector pNZ8148, primers were designed and the bile salt hydrolase (BSH) gene was gotten from Bacillus bifidus ATCC 29521 by PCR. BSH gene was inserted into lactic acid bacteria expression vector pNZ8148 to construct the recombinant pNZ8148-BSH. The recombinant pNZ8148-BSH was transferred into lactic acid bacteria NZ9000 with electrotransformation method. And the recombinant which could express BSH protein was obtained. It was identified by SDS-PAGE electrophoresis and activity verification. The result could provide a rationale reference for expressing BSH in lactic acid bacteria.
基金Supported by National 863 Project of China (2006AA10A206)
文摘Antimicrobial peptides are widely distributed in nature,existing in organisms of plants,insects,and vertebrates.It has been approved that antimicrobial peptides have broad spectrum antimicrobial activities,and play a key modulatory role in the innate immune response and tumor inhibiting activity.Due to the special action mechanism,the antimicrobial peptides become a hot field of genetic engineering.In the present paper,the general properties,mechanism of action,application value,existing problems,the latest progress and the expression strategy were discussed.
基金Supported by the Funding of High Technology Project of Ministry of Science and Technology of China(863 Project,2013AA102504-03)
文摘Methionine and lysine are restrictive essential amino acids of livestock, they are also the most attentive indexes in the feed production to carry out the quality control and quality evaluation. Their contents in feed directly affect livestock protein synthesis. Bacillus natto has excellent probiotic properties. In this experiment, we used the genetic engineering method, fusion PCR technique, to connect methionine-rich gene (zein) from maize endosperm protein with lysine-rich gene (Cflr) from the pepper anther, then the fusion gene was inserted into the expression vector pHT43, and the recombinant plasmid pHT43/zein-Cflr was constructed. The recombinant plasmid was transferred into Bacillus natto, and induced by IPTG for the expression of the fusion gene. We found an apparent band at 40 ku site for the recombinant strain by SDS-PAGE. The contents of methionine and lysine were individually detected with HPLC, the quantities of methionine and lysine in the recombinant strain increased by 18.37% and 24.68% than the wild one, respectively. We also verified the stability of the recombinant bacterium during passaging, and found the stability was 100%. This study provided research-basis for the application of the recombined Bacillus natto as feed additive.
基金Supported by the National Natural Science Fund Project(31171657)Heilongjiang Province Natural Fund Project(ZD201207)Heilongjiang Province Postdoctoral Special Funds(LBH-Q13133)
文摘We cloned and expressed bile salt hydrolase gene ofLactobacillus plantarum M1-UVS29 in Lactococcus lactis NZ9000 successfully. Gene-specific primers for amplification of L. plantarum bsh were designed by using sequence which availabled from GenBank. The production of PCR amplicon was confirmed by sequencing and cloned into pMD18-T vector, and then recombined into expression vector pNZ8148 and yielding vector pNZ8148-BSH, pNZ8148-BSH was transferred into Lactococcus lactis NZ9000. Sequencing indicated that the cloned bsh fragment contained 995 nucleotides, and shared 99.3% sequence homology with bsh gene from L. plantarum MBUL10. Cloned bsh fragment was successfully transduced into NICE expression system and confirmed by PCR and restriction digest. Recombinant BSH protein was analyzed by SDS-PAGE. The molecular weight of BSH protein was approximately 37 ku. Activity of the expressed protein was 0.77 μmol· min^-1. The successfully expressed proteins by genetic engineering technology made the function of lactic acid bacteria be abundant and laid the foundation for further researches into cholesterol-lowering lactic acid bacterium food and probiotics.
文摘It’s very necessary to study the translation of figurative expressions from English into Chinese since two languages differ a lot in lexical,syntactic and cultural aspects.In terms of translation approaches there are three ones largely used depending on different situations: literal translation from English into Chinese,translation from figurative expressions into figurative ones and translation from figurative expressions into nonfigurative ones.
基金supported by the Major Research Plan of National Natural Science Foundation of China(NO.31690093)Creative Research Groups of China(31621005)the Agricultural Science and Technology Innovation Program Cooperation and Innovation Mission(CAAS-XTCX2016)
文摘Background:INDETERMINATE DOMAIN(IDD)transcription factors form one of the largest and most conserved gene families in plant kingdom and play important roles in various processes of plant growth and development,such as flower induction in term of flowering control.Till date,systematic and functional analysis of IDD genes remained infancy in cotton.Results:In this study,we identified total of 162 IDD genes from eight different plant species including 65 IDD genes in Gossypium hirsutum.Phylogenetic analysis divided IDDs genes into seven well distinct groups.The gene structures and conserved motifs of GhIDD genes depicted highly conserved exon-intron and protein motif distribution patterns.Gene duplication analysis revealed that among 142 orthologous gene pairs,54 pairs have been derived by segmental duplication events and four pairs by tandem duplication events.Further,Ka/Ks values of most of orthologous/paralogous gene pairs were less than one suggested the purifying selection pressure during evolution.Spatiotemporal expression pattern by qRT-PCR revealed that most of the investigated GhIDD genes showed higher transcript levels in ovule of seven days post anthesis,and upregulated response under the treatments of multiple abiotic stresses.Conclusions:Evolutionary analysis revealed that IDD gene family was highly conserved in plant during the rapid phase of evolution.Whole genome duplication,segmental as well as tandem duplication significantly contributed to the expansion of IDD gene family in upland cotton.Some distinct genes evolved into special subfamily and indicated potential role in the allotetraploidy Gossypium hisutum evolution and development High transcript levels of GhIDD genes in ovules illustrated their potential roles in seed and fiber development Further,upregulated responses of GhIDD genes under the treatments of various abiotic stresses suggested them as important genetic regulators to improve stress resistance in cotton breeding.
基金Supported in Part by the Key Project of Chinese Ministry of Education (106065) Heilongjiang Provincial Natural ScienceFoundation (C200533)
文摘To understand the use of real-time reverse transcription-polymerase chain reaction (real-time RT-PCR) for detecting the relative abundance of mRNA, the expression of a tobacco ferrltin gene (NtFer1) was detected by Northern blot and real-time RT-PCR. The results indicated that both of the two methods were able to detect mRNA expression of NtFer1 cleady and similady, namely NtFer1 expression was responsive to iron-ovedoad, and the abundance of NtFer1 mRNA was greatly increased after iron loaded for 6 h. To compare the effect and sensitivity of two methods, results revealed that Northern blot need 30 μg of total RNA and at least 3 days for the total protocol performance, whereas real-time RT-PCR only need 2 μg of total RNA and 1.5 h. The real-time RT-PCR is rather sensitive and effective than Northern blot. Real-time RT-PCR analysis can be used to rapidly detect the relative abundance of mRNA expression instead of Northern blot analysis.
基金supported by the The National Key ResearchDevelopment Program of China(2016YFD0101400,2017YFD0101600)
文摘Background: The SWEET (Sugars will eventually be exported transporters) gene family plays multiple roles in plant physiological activities and development process. It participates in reproductive development and in the process of sugar transport and absorption, plant senescence and stress responses and plant-pathogen interaction. However, thecomprehensive analysis of SWEET genes has not been reported in cotton. Results: In this study, we identified 22, 31, 55 and 60 SWEETgenes from the sequenced genomes of Gossypium orboreum, G. rairnondii, G. hirsutum and G. borbadense, respectively. Phylogenetic tree analysis showed that the SWEET genes could be divided into four groups, which were further classified into 14 sub-clades. Further analysis of chromosomal location, synteny analysis and gene duplication suggested that the orthologs showed a good collinearity and segmental duplication events played a crucial role in the expansion of the family in cotton. Specific MtN3_slv domains were highly conserved between Arabidopsis and cotton by exon-intron organization and motif analysis. In addition, the expression pattern in different tissues indicated that the duplicated genes in cotton might have acquired new functions as a result of sub-functionalization or neo-functionalization. The expression pattern of SWEET genes showed that the different genes were induced by diverse stresses. The identification and functional analysis of SWEET genes in cotton may provide more candidate genes for genetic modification. Conclusion: SWEET genes were classified into four clades in cotton. The expression patterns suggested that the duplicated genes might have experienced a functional divergence. This work provides insights into the evolution of SWEETgenes and more candidates for specific genetic modification, which will be useful in future research.
基金supported by National Natural Science Foundation of China (6087208460940008)+2 种基金Beijing Training Programming Foundation for the Talents (20081D1600300343)Excellent Young Scholar Research Fund of Beijing Institute of Technology (2007Y0305)Fundamental Research Foundation of Beijing Institute of Technology (20080342005)
文摘A new method to extract person-independent expression feature based on higher-order singular value decomposition (HOSVD) is proposed for facial expression recognition. Based on the assumption that similar persons have similar facial expression appearance and shape, the person-similarity weighted expression feature is proposed to estimate the expression feature of test persons. As a result, the estimated expression feature can reduce the influence of individuals caused by insufficient training data, and hence become less person-dependent. The proposed method is tested on Cohn-Kanade facial expression database and Japanese female facial expression (JAFFE) database. Person-independent experimental results show the superiority of the proposed method over the existing methods.
文摘A critical difference between the right hemisphere hypothesis and valence hypothesis of emotion processing is whether the processing of happy facial expressions is lateralized to the right or left hemisphere. In this study participants from a Chinese sample were asked to classify happy or neutral facial expressions presented either bilaterally in both visual fields or unilaterally in the left visual field(LVF)or right visual field(RVF). They were required to make the speeded responses using either the left or right hand. It was found that for both left and right hand responses, happy(and neutral)expressions presented in the LVF were identified faster than happy(and neutral)expressions presented in the RVF. Bilateral presentation showed no further advantage over LVF presentation. Moreover, left hand responses were generally faster than right hand responses, although this effect was more pronounced for neutral expression. These findings were interpreted as supporting the right hemisphere hypothesis, with happy expression being identified initially by the right hemisphere.
基金supported by the Major Research Plan of National Natural Science Foundation of China(NO.31690093)Young Elite Scientist Sponsorship Program by CAST(China Association for Science and Technology)
文摘Background: RING H2 finger E3 ligase (RH2FE3) genes encode cysteine rich proteins that mediate E3 ubiquitin ligase activity and degrade target substrates. The roles of these genes in plant responses to phytohormones and abiotic stresses are well documented in various species, but their roles in cotton fiber development are poorly understood. To date, genome wide identification and expression analyses of Gossypium hirsutum RH2FE3 genes have not been reported. Methods: We performed computational identification, structural and phylogenetic analyses, chromosomal distribution analysis and estimated KJKs values of G hirsutum RH2FE3 genes. Orthologous and paralogous gene pairs were identified by all versus all BLASTP searches. We predicted cis regulatory elements and analyzed microarray data sets to generate heatmaps at different development stages. Tissue specific expression in cotton fiber, and hormonal and abiotic stress responses were determined by quantitative real time polymerase chain reaction (qRT PCR) analysis. Results: We investigated 140 G hirsutum, 80 G. orboreum, and evolutionary mechanisms and compared them with orthologs 89 G. roimondii putative RH2FB genes and their in Arobidopsis and rice. A domain based analysis of the G hirsutum RH2FE3 genes predicted conserved signature motifs and gene structures. Chromosomal localization showed the genes were distributed across all G hirsutum chromosomes, and 60 duplication events (4 tandem and 56 segmental duplications) and 98 orthologs were detected, cis elements were detected in the promoter regions of G hirsutum RH2FE3 genes. Microarray data and qRT PCR analyses showed that G hirsutum RH2FE3 genes were strongly correlated with cotton fiber development. Additionally, almost all the (brassinolide, gibberellic acid (GA), indole 3-acetic acid drought, and salt). dentified genes were up regulated in response to phytohormones (IAA), and salicylic acid (SA)) and abiotic stresses (cold, heat, Conclusions: The genome wide identification, comprehensive analysis, and characterization of conserved domains and gene structures, as well as phylogenetic analysis, cis element prediction, and expression profile analysis of G hirsutum RH2FE3 genes and their roles in cotton fiber development and responses to plant hormones and abiotic stresses are reported here for the first time. Our findings will contribute to the genome wide analysis of putative RH2FE3 genes in other species and lay a foundation for future physiological and functional research on G hirsutum RH2FE3 genes.
文摘Gene expression profiling at early stages(0~2 DPA) of fiber development in Gossypium hirsutum identified a number of transcription factors which were down regulated in fiberless mutants relative to wild type controls and which could play a role in controlling early fiber development.Chief among these was GhMYB25,a Mixta-like MYB gene.Transgenic GhMYB25-silenced cotton