In view of the fact that traditional air target threat assessment methods are difficult to reflect the combat characteristics of uncertain, dynamic and hybrid formation, an algorithm is proposed to solve the multi-tar...In view of the fact that traditional air target threat assessment methods are difficult to reflect the combat characteristics of uncertain, dynamic and hybrid formation, an algorithm is proposed to solve the multi-target threat assessment problems. The target attribute weight is calculated by the intuitionistic fuzzy entropy(IFE) algorithm and the time series weight is gained by the Poisson distribution method based on multi-times data. Finally,assessment and sequencing of the air multi-target threat model based on IFE and dynamic Vlse Kriterijumska Optimizacija I Kompromisno Resenje(VIKOR) is established with an example which indicates that the method is reasonable and effective.展开更多
Based on fuzzy adaptive and dynamic surface(FADS),an integrated guidance and control(IGC)approach was proposed for large caliber naval gun guided projectile,which was robust to target maneuver,canard dynamic character...Based on fuzzy adaptive and dynamic surface(FADS),an integrated guidance and control(IGC)approach was proposed for large caliber naval gun guided projectile,which was robust to target maneuver,canard dynamic characteristics,and multiple constraints,such as impact angle,limited measurement of line of sight(LOS)angle rate and nonlinear saturation of canard deflection.Initially,a strict feedback cascade model of IGC in longitudinal plane was established,and extended state observer(ESO)was designed to estimate LOS angle rate and uncertain disturbances with unknown boundary inside and outside of system,including aerodynamic parameters perturbation,target maneuver and model errors.Secondly,aiming at zeroing LOS angle tracking error and LOS angle rate in finite time,a nonsingular terminal sliding mode(NTSM)was designed with adaptive exponential reaching law.Furthermore,combining with dynamic surface,which prevented the complex differential of virtual control laws,the fuzzy adaptive systems were designed to approximate observation errors of uncertain disturbances and to reduce chatter of control law.Finally,the adaptive Nussbaum gain function was introduced to compensate nonlinear saturation of canard deflection.The LOS angle tracking error and LOS angle rate were convergent in finite time and whole system states were uniform ultimately bounded,rigorously proven by Lyapunov stability theory.Hardware-in-the-loop simulation(HILS)and digital simulation experiments both showed FADS provided guided projectile with good guidance performance while striking targets with different maneuvering forms.展开更多
In this paper, an adaptive dynamic control scheme based on a fuzzy neural network is presented, that presents utilizes both feed-forward and feedback controller elements. The former of the two elements comprises a neu...In this paper, an adaptive dynamic control scheme based on a fuzzy neural network is presented, that presents utilizes both feed-forward and feedback controller elements. The former of the two elements comprises a neural network with both identification and control role, and the latter is a fuzzy neural algorithm, which is introduced to provide additional control enhancement. The feedforward controller provides only coarse control, whereas the feedback controller can generate on-line conditional proposition rule automatically to improve the overall control action. These properties make the design very versatile and applicable to a range of industrial applications.展开更多
Fuzzy Petri net(FPN) has been extensively applied in industrial fields for knowledge-based systems or systems with uncertainty.Although the applications of FPN are known to be successful,the theoretical research of FP...Fuzzy Petri net(FPN) has been extensively applied in industrial fields for knowledge-based systems or systems with uncertainty.Although the applications of FPN are known to be successful,the theoretical research of FPN is still at an initial stage.To pave a way for further study,this work explores related dynamic properties of FPN including reachability,boundedness,safeness,liveness and fairness.The whole methodology is divided into two phases.In the first phase,a comparison between elementary net system(EN_system) and FPN is established to prove that the FPN is an extensive formalism of Petri nets using a backwards-compatible extension method.Next,current research results of dynamic properties are utilized to analyze FPN model.The results illustrate that FPN model is bounded,safe,weak live and fair,and can support theoretical evidences for designing related decomposition algorithm.展开更多
A dynamic hesitant fuzzy linguistic group decisionmaking(DHFLGDM) problem is studied from the perspective of information reliability based on the theory of hesitant fuzzy linguistic term sets(HFLTSs). First, an approa...A dynamic hesitant fuzzy linguistic group decisionmaking(DHFLGDM) problem is studied from the perspective of information reliability based on the theory of hesitant fuzzy linguistic term sets(HFLTSs). First, an approach is applied to transform the dynamic HFLTSs(DHFLTSs) into a set of proportional linguistic terms to eliminate the time dimension. Second, expert reliability is measured by considering both group similarity and degree of certainty, and an optimization method is employed to quantify the linguistic terms by maximizing the group similarity. Third, through computing the attribute stability as well as its reliability, a combination rule which considers both reliability and weight is proposed to aggregate the information, and then the aggregated grade values and degree of stability are used to make a selection. Finally,the application and feasibility of the proposed method are verified through a case study and method comparison.展开更多
针对现有实际通用组播(pragmatic general multicast protocol,PGM)拥塞控制方案难以适应网络的动态变化等不足,提出了一种基于模糊比例积分微分(fuzzy proportional plus integral plus derivative,Fuzzy-PID)控制的组播拥塞控制机制(f...针对现有实际通用组播(pragmatic general multicast protocol,PGM)拥塞控制方案难以适应网络的动态变化等不足,提出了一种基于模糊比例积分微分(fuzzy proportional plus integral plus derivative,Fuzzy-PID)控制的组播拥塞控制机制(fuzzy-PID-controlled multicast congestion control mechanism,FPIDMCC)。FPIDMCC在源端和接收端代表间运用Fuzzy-PID控制方案,使源端能快速响应网络拥塞,实时调整发送速率并使之趋于稳定,增强了对动态网络的适应性;此外,采用基于代表和中间节点反馈聚集相结合的方式进行反馈控制,可有效避免反馈爆炸。其中Fuzzy-PID控制方案结合了传统PID和模糊推理的优点,由模糊推理得到PID控制参数,减少了对系统模型的依赖性。仿真结果表明,FPIDMCC机制拥塞响应速度快、系统稳定性好、动态适应能力强。展开更多
As the air combat environment becomes more complicated and changeable, accurate threat assessment of air target has a significant impact on air defense operations. This paper proposes an improved generalized intuition...As the air combat environment becomes more complicated and changeable, accurate threat assessment of air target has a significant impact on air defense operations. This paper proposes an improved generalized intuitionistic fuzzy soft set (GIFSS) method for dynamic assessment of air target threat. Firstly, the threat assessment index is reasonably determined by analyzing the typical characteristics of air targets. Secondly, after the GIFSS at different time is obtained, the index weight is determined by the intuitionistic fuzzy set entropy and the relative entropy theory. Then, the inverse Poisson distribution method is used to determine the weight of time series, and then the time-weighted GIFSS is obtained. Finally, threat assessment of five air targets is carried out by using the improved GIFSS (I-GIFSS) and comparison methods. The validity and superiority of the proposed method are verified by calculation and comparison.展开更多
This paper describes an adaptive control approach for an air-breathing hypersonic vehicle. The control objective is to provide robust altitudes and velocity tracking in the presence of model uncertainties and varying ...This paper describes an adaptive control approach for an air-breathing hypersonic vehicle. The control objective is to provide robust altitudes and velocity tracking in the presence of model uncertainties and varying disturbances. A fuzzy-neural disturbance observer is developed to estimate uncertainties and disturbances, and the adaptive controller is synthesized by the dynamic surface approach combing with the observer. The tracking error at the steady state can be guaranteed to converge to inside of a small residue set which the size of the set can be an arbitrary small value. Simulation results demonstrate the effectiveness of the presented approach.展开更多
Dynamic modeling was carried on by combining the dynamic of machinery with composite triology, and the critical condition in which the ways would not produce composite-friction self-excited vibration was obtained. The...Dynamic modeling was carried on by combining the dynamic of machinery with composite triology, and the critical condition in which the ways would not produce composite-friction self-excited vibration was obtained. The movement regularity and characteristic of the airflow in exhaust gas slit were analyzed, and the relationship between pressure lost and geometry parameters of exhaust gas slit was obtained. A dynamic model and a mathematical model were established for pneumatic half-floating slide ways by combining the dynamics of machinery with hydrokinetics. The objective function for the optimization of slide ways was established based on the fuzzy optimization theory. The membership function of fuzzy constraint was deduced, the fuzzy constraint limit was established by amplification coefficient method, and the optimal value was resolved by the multilevel fuzzy comprehensive evaluation method. By combining the internal penalty function method with the variable metric method, the fuzzy optimization design program of ways was designed based on the Matlab platform. The validation was carried on by an example, and ideal results of fuzzy optimization design of slide ways were obtained.展开更多
基金supported by the National Natural Science Foundation of China(61401363)the Science and Technology on Avionics Integration Laboratory and Aeronautical Science Foundation(20155153034)+1 种基金the Innovative Talents Promotion Plan in Shaanxi Province(2017KJXX-15)the Fundamental Research Funds for the Central Universities(3102016AXXX005)
文摘In view of the fact that traditional air target threat assessment methods are difficult to reflect the combat characteristics of uncertain, dynamic and hybrid formation, an algorithm is proposed to solve the multi-target threat assessment problems. The target attribute weight is calculated by the intuitionistic fuzzy entropy(IFE) algorithm and the time series weight is gained by the Poisson distribution method based on multi-times data. Finally,assessment and sequencing of the air multi-target threat model based on IFE and dynamic Vlse Kriterijumska Optimizacija I Kompromisno Resenje(VIKOR) is established with an example which indicates that the method is reasonable and effective.
基金supported by Naval Weapons and Equipment Pre-Research Project(Grant No.3020801010105).
文摘Based on fuzzy adaptive and dynamic surface(FADS),an integrated guidance and control(IGC)approach was proposed for large caliber naval gun guided projectile,which was robust to target maneuver,canard dynamic characteristics,and multiple constraints,such as impact angle,limited measurement of line of sight(LOS)angle rate and nonlinear saturation of canard deflection.Initially,a strict feedback cascade model of IGC in longitudinal plane was established,and extended state observer(ESO)was designed to estimate LOS angle rate and uncertain disturbances with unknown boundary inside and outside of system,including aerodynamic parameters perturbation,target maneuver and model errors.Secondly,aiming at zeroing LOS angle tracking error and LOS angle rate in finite time,a nonsingular terminal sliding mode(NTSM)was designed with adaptive exponential reaching law.Furthermore,combining with dynamic surface,which prevented the complex differential of virtual control laws,the fuzzy adaptive systems were designed to approximate observation errors of uncertain disturbances and to reduce chatter of control law.Finally,the adaptive Nussbaum gain function was introduced to compensate nonlinear saturation of canard deflection.The LOS angle tracking error and LOS angle rate were convergent in finite time and whole system states were uniform ultimately bounded,rigorously proven by Lyapunov stability theory.Hardware-in-the-loop simulation(HILS)and digital simulation experiments both showed FADS provided guided projectile with good guidance performance while striking targets with different maneuvering forms.
基金China Postdoctoral Science Foundation and Natural Science of Heibei Province!698004
文摘In this paper, an adaptive dynamic control scheme based on a fuzzy neural network is presented, that presents utilizes both feed-forward and feedback controller elements. The former of the two elements comprises a neural network with both identification and control role, and the latter is a fuzzy neural algorithm, which is introduced to provide additional control enhancement. The feedforward controller provides only coarse control, whereas the feedback controller can generate on-line conditional proposition rule automatically to improve the overall control action. These properties make the design very versatile and applicable to a range of industrial applications.
基金Project(R.J13000.7828.4F721)supported by Soft Computing Research Group(SCRP),Research Management Centre(RMC),UTM and Ministry of Higher Education Malaysia(MOHE)for Financial Support Through the Fundamental Research Grant Scheme(FRGS),MalaysiaProject(61462029)supported by the National Natural Science Foundation of China
文摘Fuzzy Petri net(FPN) has been extensively applied in industrial fields for knowledge-based systems or systems with uncertainty.Although the applications of FPN are known to be successful,the theoretical research of FPN is still at an initial stage.To pave a way for further study,this work explores related dynamic properties of FPN including reachability,boundedness,safeness,liveness and fairness.The whole methodology is divided into two phases.In the first phase,a comparison between elementary net system(EN_system) and FPN is established to prove that the FPN is an extensive formalism of Petri nets using a backwards-compatible extension method.Next,current research results of dynamic properties are utilized to analyze FPN model.The results illustrate that FPN model is bounded,safe,weak live and fair,and can support theoretical evidences for designing related decomposition algorithm.
基金supported by the National Natural Science Foundation of China(71171112 71502073+2 种基金 71601002)the Scientific Innovation Research of College Graduates in Jiangsu Province(KYZZ150094)the Anhui Provincial Natural Science Foundation(1708085MG168)
文摘A dynamic hesitant fuzzy linguistic group decisionmaking(DHFLGDM) problem is studied from the perspective of information reliability based on the theory of hesitant fuzzy linguistic term sets(HFLTSs). First, an approach is applied to transform the dynamic HFLTSs(DHFLTSs) into a set of proportional linguistic terms to eliminate the time dimension. Second, expert reliability is measured by considering both group similarity and degree of certainty, and an optimization method is employed to quantify the linguistic terms by maximizing the group similarity. Third, through computing the attribute stability as well as its reliability, a combination rule which considers both reliability and weight is proposed to aggregate the information, and then the aggregated grade values and degree of stability are used to make a selection. Finally,the application and feasibility of the proposed method are verified through a case study and method comparison.
文摘针对现有实际通用组播(pragmatic general multicast protocol,PGM)拥塞控制方案难以适应网络的动态变化等不足,提出了一种基于模糊比例积分微分(fuzzy proportional plus integral plus derivative,Fuzzy-PID)控制的组播拥塞控制机制(fuzzy-PID-controlled multicast congestion control mechanism,FPIDMCC)。FPIDMCC在源端和接收端代表间运用Fuzzy-PID控制方案,使源端能快速响应网络拥塞,实时调整发送速率并使之趋于稳定,增强了对动态网络的适应性;此外,采用基于代表和中间节点反馈聚集相结合的方式进行反馈控制,可有效避免反馈爆炸。其中Fuzzy-PID控制方案结合了传统PID和模糊推理的优点,由模糊推理得到PID控制参数,减少了对系统模型的依赖性。仿真结果表明,FPIDMCC机制拥塞响应速度快、系统稳定性好、动态适应能力强。
基金supported by the National Natural Science Foundation of China(51779263)
文摘As the air combat environment becomes more complicated and changeable, accurate threat assessment of air target has a significant impact on air defense operations. This paper proposes an improved generalized intuitionistic fuzzy soft set (GIFSS) method for dynamic assessment of air target threat. Firstly, the threat assessment index is reasonably determined by analyzing the typical characteristics of air targets. Secondly, after the GIFSS at different time is obtained, the index weight is determined by the intuitionistic fuzzy set entropy and the relative entropy theory. Then, the inverse Poisson distribution method is used to determine the weight of time series, and then the time-weighted GIFSS is obtained. Finally, threat assessment of five air targets is carried out by using the improved GIFSS (I-GIFSS) and comparison methods. The validity and superiority of the proposed method are verified by calculation and comparison.
基金supported by the National Natural Science Foundation of China(6110407361104123)the China Postdoctoral Science Foundation(201003548)
文摘This paper describes an adaptive control approach for an air-breathing hypersonic vehicle. The control objective is to provide robust altitudes and velocity tracking in the presence of model uncertainties and varying disturbances. A fuzzy-neural disturbance observer is developed to estimate uncertainties and disturbances, and the adaptive controller is synthesized by the dynamic surface approach combing with the observer. The tracking error at the steady state can be guaranteed to converge to inside of a small residue set which the size of the set can be an arbitrary small value. Simulation results demonstrate the effectiveness of the presented approach.
基金Supported by National Natural Science Foundation of China(61473176,61105077,61402260,61074149) the Excellent Young and Middle-Aged Scientist Award Grant of Shandong Province of China(BS2012DX026,BS2013DX043) the Open Program from theState Key Laboratory of Management and Control for Complex Systems(20140102)
基金Project(50775194) supported by the National Natural Science Foundation of China
文摘Dynamic modeling was carried on by combining the dynamic of machinery with composite triology, and the critical condition in which the ways would not produce composite-friction self-excited vibration was obtained. The movement regularity and characteristic of the airflow in exhaust gas slit were analyzed, and the relationship between pressure lost and geometry parameters of exhaust gas slit was obtained. A dynamic model and a mathematical model were established for pneumatic half-floating slide ways by combining the dynamics of machinery with hydrokinetics. The objective function for the optimization of slide ways was established based on the fuzzy optimization theory. The membership function of fuzzy constraint was deduced, the fuzzy constraint limit was established by amplification coefficient method, and the optimal value was resolved by the multilevel fuzzy comprehensive evaluation method. By combining the internal penalty function method with the variable metric method, the fuzzy optimization design program of ways was designed based on the Matlab platform. The validation was carried on by an example, and ideal results of fuzzy optimization design of slide ways were obtained.