Robust and efficient AUV path planning is a key element for persistence AUV maneuvering in variable underwater environments. To develop such a path planning system, in this study, differential evolution(DE) algorithm ...Robust and efficient AUV path planning is a key element for persistence AUV maneuvering in variable underwater environments. To develop such a path planning system, in this study, differential evolution(DE) algorithm is employed. The performance of the DE-based planner in generating time-efficient paths to direct the AUV from its initial conditions to the target of interest is investigated within a complexed 3D underwater environment incorporated with turbulent current vector fields, coastal area,islands, and static/dynamic obstacles. The results of simulations indicate the inherent efficiency of the DE-based path planner as it is capable of extracting feasible areas of a real map to determine the allowed spaces for the vehicle deployment while coping undesired current disturbances, exploiting desirable currents, and avoiding collision boundaries in directing the vehicle to its destination. The results are implementable for a realistic scenario and on-board real AUV as the DE planner satisfies all vehicular and environmental constraints while minimizing the travel time/distance, in a computationally efficient manner.展开更多
A self-adaptive differential evolution neutron spectrum unfolding algorithm(SDENUA)is established in this study to unfold the neutron spectra obtained from a water-pumping-injection multilayered concentric sphere neut...A self-adaptive differential evolution neutron spectrum unfolding algorithm(SDENUA)is established in this study to unfold the neutron spectra obtained from a water-pumping-injection multilayered concentric sphere neutron spectrometer(WMNS).Specifically,the neutron fluence bounds are estimated to accelerate the algorithm convergence,and the minimum error between the optimal solution and input neutron counts with relative uncertainties is limited to 10^(-6)to avoid unnecessary calculations.Furthermore,the crossover probability and scaling factor are self-adaptively controlled.FLUKA Monte Carlo is used to simulate the readings of the WMNS under(1)a spectrum of Cf-252 and(2)its spectrum after being moderated,(3)a spectrum used for boron neutron capture therapy,and(4)a reactor spectrum.Subsequently,the measured neutron counts are unfolded using the SDENUA.The uncertainties of the measured neutron count and the response matrix are considered in the SDENUA,which does not require complex parameter tuning or an a priori default spectrum.The results indicate that the solutions of the SDENUA agree better with the IAEA spectra than those of MAXED and GRAVEL in UMG 3.1,and the errors of the final results calculated using the SDENUA are less than 12%.The established SDENUA can be used to unfold spectra from the WMNS.展开更多
DV-Hop localization algorithm has greater localization error which estimates distance from an unknown node to the different anchor nodes by using estimated average size of a hop to achieve the location of the unknown ...DV-Hop localization algorithm has greater localization error which estimates distance from an unknown node to the different anchor nodes by using estimated average size of a hop to achieve the location of the unknown node.So an improved DV-Hop localization algorithm based on correctional average size of a hop,HDCDV-Hop algorithm,is proposed.The improved algorithm corrects the estimated distance between the unknown node and different anchor nodes based on fractional hop count information and relatively accurate coordinates of the anchor nodes information,and it uses the improved Differential Evolution algorithm to get the estimate location of unknown nodes so as to further reduce the localization error.Simulation results show that our proposed algorithm have lower localization error and higher localization accuracy compared with the original DV-Hop algorithm and other classical improved algorithms.展开更多
Optimization efficiencies and mechanisms of simulated annealing, genetic algorithm, differential evolution and downhill simplex differential evolution are compared and analyzed. Simulated annealing and genetic algorit...Optimization efficiencies and mechanisms of simulated annealing, genetic algorithm, differential evolution and downhill simplex differential evolution are compared and analyzed. Simulated annealing and genetic algorithm use a directed random process to search the parameter space for an optimal solution. They include the ability to avoid local minima, but as no gradient information is used, searches may be relatively inefficient. Differential evolution uses information from a distance and azimuth between individuals of a population to search the parameter space, the initial search is effective, but the search speed decreases quickly because differential information between the individuals of population vanishes. Local downhill simplex and global differential evolution methods are developed separately, and combined to produce a hybrid downhill simplex differential evolution algorithm. The hybrid algorithm is sensitive to gradients of the object function and search of the parameter space is effective. These algorithms are applied to the matched field inversion with synthetic data. Optimal values of the parameters, the final values of object function and inversion time is presented and compared.展开更多
文摘Robust and efficient AUV path planning is a key element for persistence AUV maneuvering in variable underwater environments. To develop such a path planning system, in this study, differential evolution(DE) algorithm is employed. The performance of the DE-based planner in generating time-efficient paths to direct the AUV from its initial conditions to the target of interest is investigated within a complexed 3D underwater environment incorporated with turbulent current vector fields, coastal area,islands, and static/dynamic obstacles. The results of simulations indicate the inherent efficiency of the DE-based path planner as it is capable of extracting feasible areas of a real map to determine the allowed spaces for the vehicle deployment while coping undesired current disturbances, exploiting desirable currents, and avoiding collision boundaries in directing the vehicle to its destination. The results are implementable for a realistic scenario and on-board real AUV as the DE planner satisfies all vehicular and environmental constraints while minimizing the travel time/distance, in a computationally efficient manner.
基金supported by the National Key R&D Program of the MOST of China(No.2016YFA0300204)the National Natural Science Foundation of China(Nos.11227902)as part of the Si PáME2beamline project+1 种基金supported by the National Natural Science Foundation of China(No.41774120)the Sichuan Science and Technology Program(No.2021YJ0329)。
文摘A self-adaptive differential evolution neutron spectrum unfolding algorithm(SDENUA)is established in this study to unfold the neutron spectra obtained from a water-pumping-injection multilayered concentric sphere neutron spectrometer(WMNS).Specifically,the neutron fluence bounds are estimated to accelerate the algorithm convergence,and the minimum error between the optimal solution and input neutron counts with relative uncertainties is limited to 10^(-6)to avoid unnecessary calculations.Furthermore,the crossover probability and scaling factor are self-adaptively controlled.FLUKA Monte Carlo is used to simulate the readings of the WMNS under(1)a spectrum of Cf-252 and(2)its spectrum after being moderated,(3)a spectrum used for boron neutron capture therapy,and(4)a reactor spectrum.Subsequently,the measured neutron counts are unfolded using the SDENUA.The uncertainties of the measured neutron count and the response matrix are considered in the SDENUA,which does not require complex parameter tuning or an a priori default spectrum.The results indicate that the solutions of the SDENUA agree better with the IAEA spectra than those of MAXED and GRAVEL in UMG 3.1,and the errors of the final results calculated using the SDENUA are less than 12%.The established SDENUA can be used to unfold spectra from the WMNS.
文摘由于高视距(Line of Sight,LOS)的空对地通信,无人机(Unmanned Aerial Vehicle,UAV)通信网络容易遭受窃听者的截获。为此,针对智能反射面(Intelligent Reflecting Surface,IRS)辅助UAV通信系统,提出基于改进差分进化算法的安全速率优化(Optimal Secrecy Rate Based on Improved Differential Evolution,OSR-IDE)算法,进而提升系统的安全速率。将IRS与UAV结合,提升信号传输质量。OSR-IDE算法联合优化UAV传输的波束赋形(Passive Beamforming,PBF)、IRS相移、IRS和UAV位置来最大化系统的安全速率。建立最大化系统安全速率优化问题模型,利用改进的差分进化算法求解。仿真结果表明,OSR-IDE算法的安全速率优于基准算法。
基金supported by Fundamental Research Funds of Jilin University(No.SXGJQY2017-9,No.2017TD-19)the National Natural Science Foundation of China(No.61771219)
文摘DV-Hop localization algorithm has greater localization error which estimates distance from an unknown node to the different anchor nodes by using estimated average size of a hop to achieve the location of the unknown node.So an improved DV-Hop localization algorithm based on correctional average size of a hop,HDCDV-Hop algorithm,is proposed.The improved algorithm corrects the estimated distance between the unknown node and different anchor nodes based on fractional hop count information and relatively accurate coordinates of the anchor nodes information,and it uses the improved Differential Evolution algorithm to get the estimate location of unknown nodes so as to further reduce the localization error.Simulation results show that our proposed algorithm have lower localization error and higher localization accuracy compared with the original DV-Hop algorithm and other classical improved algorithms.
文摘Optimization efficiencies and mechanisms of simulated annealing, genetic algorithm, differential evolution and downhill simplex differential evolution are compared and analyzed. Simulated annealing and genetic algorithm use a directed random process to search the parameter space for an optimal solution. They include the ability to avoid local minima, but as no gradient information is used, searches may be relatively inefficient. Differential evolution uses information from a distance and azimuth between individuals of a population to search the parameter space, the initial search is effective, but the search speed decreases quickly because differential information between the individuals of population vanishes. Local downhill simplex and global differential evolution methods are developed separately, and combined to produce a hybrid downhill simplex differential evolution algorithm. The hybrid algorithm is sensitive to gradients of the object function and search of the parameter space is effective. These algorithms are applied to the matched field inversion with synthetic data. Optimal values of the parameters, the final values of object function and inversion time is presented and compared.