Test data compression and test resource partitioning (TRP) are essential to reduce the amount of test data in system-on-chip testing. A novel variable-to-variable-length compression codes is designed as advanced fre...Test data compression and test resource partitioning (TRP) are essential to reduce the amount of test data in system-on-chip testing. A novel variable-to-variable-length compression codes is designed as advanced fre- quency-directed run-length (AFDR) codes. Different [rom frequency-directed run-length (FDR) codes, AFDR encodes both 0- and 1-runs and uses the same codes to the equal length runs. It also modifies the codes for 00 and 11 to improve the compression performance. Experimental results for ISCAS 89 benchmark circuits show that AFDR codes achieve higher compression ratio than FDR and other compression codes.展开更多
Vector quantization (VQ) is an important data compression method. The key of the encoding of VQ is to find the closest vector among N vectors for a feature vector. Many classical linear search algorithms take O(N)...Vector quantization (VQ) is an important data compression method. The key of the encoding of VQ is to find the closest vector among N vectors for a feature vector. Many classical linear search algorithms take O(N) steps of distance computing between two vectors. The quantum VQ iteration and corresponding quantum VQ encoding algorithm that takes O(√N) steps are presented in this paper. The unitary operation of distance computing can be performed on a number of vectors simultaneously because the quantum state exists in a superposition of states. The quantum VQ iteration comprises three oracles, by contrast many quantum algorithms have only one oracle, such as Shor's factorization algorithm and Grover's algorithm. Entanglement state is generated and used, by contrast the state in Grover's algorithm is not an entanglement state. The quantum VQ iteration is a rotation over subspace, by contrast the Grover iteration is a rotation over global space. The quantum VQ iteration extends the Grover iteration to the more complex search that requires more oracles. The method of the quantum VQ iteration is universal.展开更多
The wireless sensor network (WSN) plays an important role in monitoring the environment near the harbor in order to make the ships nearby out of dangers and to optimize the utilization of limited sea routes. Based o...The wireless sensor network (WSN) plays an important role in monitoring the environment near the harbor in order to make the ships nearby out of dangers and to optimize the utilization of limited sea routes. Based on the historical data collected by the buoys with sensing capacities, a novel data compression algorithm called adaptive time piecewise constant vector quantization (ATPCVQ) is proposed to utilize the principal components. The proposed system is capable of lowering the budget of wireless communication and enhancing the lifetime of sensor nodes subject to the constrain of data precision. Furthermore, the proposed algorithm is verified by using the practical data in Qinhuangdao Port of China.展开更多
HT-7 superconducting tokamak in the Institute of Plasma Physics of the Chinese Academy of Sciences is an experimental device for fusion research in China. The main task of the data acquisition system of HT-7 is to acq...HT-7 superconducting tokamak in the Institute of Plasma Physics of the Chinese Academy of Sciences is an experimental device for fusion research in China. The main task of the data acquisition system of HT-7 is to acquire, store, analyze and index the data. The volume of the data is nearly up to hundreds of million bytes. Besides the hardware and software support, a great capacity of data storage, process and transfer is a more important problem. To deal with this problem, the key technology is data compression algorithm. In the paper, the data format in HT-7 is introduced first, then the data compression algorithm, LZO, being a kind of portable lossless data compression algorithm with ANSI C, is analyzed. This compression algorithm, which fits well with the data acquisition and distribution in the nuclear fusion experiment, offers a pretty fast compression and extremely fast decompression. At last the performance evaluation of LZO application in HT-7 is given.展开更多
In order to storage resource of a radar recognition system, schemes for reducing data storage and for correlation discrimination of radar based on wavelet packets were proposed Experiment results at various signal-t...In order to storage resource of a radar recognition system, schemes for reducing data storage and for correlation discrimination of radar based on wavelet packets were proposed Experiment results at various signal-to-noise ratios were given The given.ability of the reduced data method's validity are supported by experimental results. Using optimal basis can get higher successful recognition rate using rigid wavelet basis.展开更多
Multispectral time delay and integration charge coupled device (TDICCD) image compression requires a low- complexity encoder because it is usually completed on board where the energy and memory are limited. The Cons...Multispectral time delay and integration charge coupled device (TDICCD) image compression requires a low- complexity encoder because it is usually completed on board where the energy and memory are limited. The Consultative Committee for Space Data Systems (CCSDS) has proposed an image data compression (CCSDS-IDC) algorithm which is so far most widely implemented in hardware. However, it cannot reduce spectral redundancy in mukispectral images. In this paper, we propose a low-complexity improved CCSDS-IDC (ICCSDS-IDC)-based distributed source coding (DSC) scheme for multispectral TDICCD image consisting of a few bands. Our scheme is based on an ICCSDS-IDC approach that uses a bit plane extractor to parse the differences in the original image and its wavelet transformed coefficient. The output of bit plane extractor will be encoded by a first order entropy coder. Low-density parity-check-based Slepian-Wolf (SW) coder is adopted to implement the DSC strategy. Experimental results on space multispectral TDICCD images show that the proposed scheme significantly outperforms the CCSDS-IDC-based coder in each band.展开更多
Aiming at the characteristics of the seismic exploration signals, the paper studies the image coding technology, the coding standard and algorithm, brings forward a new scheme of admixing coding for seismic data compr...Aiming at the characteristics of the seismic exploration signals, the paper studies the image coding technology, the coding standard and algorithm, brings forward a new scheme of admixing coding for seismic data compression. Based on it, a set of seismic data compression software has been developed.展开更多
The test vector compression is a key technique to reduce IC test time and cost since the explosion of the test data of system on chip (SoC) in recent years. To reduce the bandwidth requirement between the automatic ...The test vector compression is a key technique to reduce IC test time and cost since the explosion of the test data of system on chip (SoC) in recent years. To reduce the bandwidth requirement between the automatic test equipment (ATE) and the CUT (circuit under test) effectively, a novel VSPTIDR (variable shifting prefix-tail identifier reverse) code for test stimulus data compression is designed. The encoding scheme is defined and analyzed in detail, and the decoder is presented and discussed. While the probability of 0 bits in the test set is greater than 0.92, the compression ratio from VSPTIDR code is better than the frequency-directed run-length (FDR) code, which can be proved by theoretical analysis and experiments. And the on-chip area overhead of VSPTIDR decoder is about 15.75 % less than the FDR decoder.展开更多
We studied the variation of image entropy before and after wavelet decomposition, the optimal number of wavelet decomposition layers, and the effect of wavelet bases and image frequency components on entropy. Numerous...We studied the variation of image entropy before and after wavelet decomposition, the optimal number of wavelet decomposition layers, and the effect of wavelet bases and image frequency components on entropy. Numerous experiments were done on typical images to calculate (using Matlab) the entropy before and after wavelet transform. It was verified that, to obtain minimal entropy, a three-layer decomposition should be adopted rather than higher orders. The result achieved by using biorthogonal wavelet decomposition is better than that of the orthogonal wavelet decomposition. The results are not directly proportional to the vanishing moment, however.展开更多
In distributed radar,most of existing radar networks operate in the tracking fusion mode which combines radar target tracks for a higher positioning accuracy.However,as the filtering covariance matrix indicating posit...In distributed radar,most of existing radar networks operate in the tracking fusion mode which combines radar target tracks for a higher positioning accuracy.However,as the filtering covariance matrix indicating positioning accuracy often occupies many bits,the communication cost from local sensors to the fusion is not always sufficiently low for some wireless communication chan-nels.This paper studies how to compress data for distributed tracking fusion algorithms.Based on the K-singular value decomposition(K-SVD)algorithm,a sparse coding algorithm is presented to sparsely represent the filtering covariance matrix.Then the least square quantization(LSQ)algo-rithm is used to quantize the data according to the statistical characteristics of the sparse coeffi-cients.Quantized results are then coded with an arithmetic coding method which can further com-press data.Numerical results indicate that this tracking data compression algorithm drops the com-munication bandwidth to 4%at the cost of a 16%root mean squared error(RMSE)loss.展开更多
基金Supported by the National Natural Science Foundation of China(61076019,61106018)the Aeronautical Science Foundation of China(20115552031)+3 种基金the China Postdoctoral Science Foundation(20100481134)the Jiangsu Province Key Technology R&D Program(BE2010003)the Nanjing University of Aeronautics and Astronautics Research Funding(NS2010115)the Nanjing University of Aeronatics and Astronautics Initial Funding for Talented Faculty(1004-YAH10027)~~
文摘Test data compression and test resource partitioning (TRP) are essential to reduce the amount of test data in system-on-chip testing. A novel variable-to-variable-length compression codes is designed as advanced fre- quency-directed run-length (AFDR) codes. Different [rom frequency-directed run-length (FDR) codes, AFDR encodes both 0- and 1-runs and uses the same codes to the equal length runs. It also modifies the codes for 00 and 11 to improve the compression performance. Experimental results for ISCAS 89 benchmark circuits show that AFDR codes achieve higher compression ratio than FDR and other compression codes.
文摘Vector quantization (VQ) is an important data compression method. The key of the encoding of VQ is to find the closest vector among N vectors for a feature vector. Many classical linear search algorithms take O(N) steps of distance computing between two vectors. The quantum VQ iteration and corresponding quantum VQ encoding algorithm that takes O(√N) steps are presented in this paper. The unitary operation of distance computing can be performed on a number of vectors simultaneously because the quantum state exists in a superposition of states. The quantum VQ iteration comprises three oracles, by contrast many quantum algorithms have only one oracle, such as Shor's factorization algorithm and Grover's algorithm. Entanglement state is generated and used, by contrast the state in Grover's algorithm is not an entanglement state. The quantum VQ iteration is a rotation over subspace, by contrast the Grover iteration is a rotation over global space. The quantum VQ iteration extends the Grover iteration to the more complex search that requires more oracles. The method of the quantum VQ iteration is universal.
基金key project of the National Natural Science Foundation of China,Information Acquirement and Publish System of Shipping Lane in Harbor,the fund of Beijing Science and Technology Commission Network Monitoring and Application Demonstration in Food Security,the Program for New Century Excellent Talents in University,National Natural Science Foundation of ChinaProject,Fundamental Research Funds for the Central Universities
文摘The wireless sensor network (WSN) plays an important role in monitoring the environment near the harbor in order to make the ships nearby out of dangers and to optimize the utilization of limited sea routes. Based on the historical data collected by the buoys with sensing capacities, a novel data compression algorithm called adaptive time piecewise constant vector quantization (ATPCVQ) is proposed to utilize the principal components. The proposed system is capable of lowering the budget of wireless communication and enhancing the lifetime of sensor nodes subject to the constrain of data precision. Furthermore, the proposed algorithm is verified by using the practical data in Qinhuangdao Port of China.
基金The project supported by the Meg-Science Enineering Project of Chinese Acdemy of Sciences
文摘HT-7 superconducting tokamak in the Institute of Plasma Physics of the Chinese Academy of Sciences is an experimental device for fusion research in China. The main task of the data acquisition system of HT-7 is to acquire, store, analyze and index the data. The volume of the data is nearly up to hundreds of million bytes. Besides the hardware and software support, a great capacity of data storage, process and transfer is a more important problem. To deal with this problem, the key technology is data compression algorithm. In the paper, the data format in HT-7 is introduced first, then the data compression algorithm, LZO, being a kind of portable lossless data compression algorithm with ANSI C, is analyzed. This compression algorithm, which fits well with the data acquisition and distribution in the nuclear fusion experiment, offers a pretty fast compression and extremely fast decompression. At last the performance evaluation of LZO application in HT-7 is given.
文摘In order to storage resource of a radar recognition system, schemes for reducing data storage and for correlation discrimination of radar based on wavelet packets were proposed Experiment results at various signal-to-noise ratios were given The given.ability of the reduced data method's validity are supported by experimental results. Using optimal basis can get higher successful recognition rate using rigid wavelet basis.
基金supported by the National High Technology Research and Development Program of China (Grant No. 863-2-5-1-13B)
文摘Multispectral time delay and integration charge coupled device (TDICCD) image compression requires a low- complexity encoder because it is usually completed on board where the energy and memory are limited. The Consultative Committee for Space Data Systems (CCSDS) has proposed an image data compression (CCSDS-IDC) algorithm which is so far most widely implemented in hardware. However, it cannot reduce spectral redundancy in mukispectral images. In this paper, we propose a low-complexity improved CCSDS-IDC (ICCSDS-IDC)-based distributed source coding (DSC) scheme for multispectral TDICCD image consisting of a few bands. Our scheme is based on an ICCSDS-IDC approach that uses a bit plane extractor to parse the differences in the original image and its wavelet transformed coefficient. The output of bit plane extractor will be encoded by a first order entropy coder. Low-density parity-check-based Slepian-Wolf (SW) coder is adopted to implement the DSC strategy. Experimental results on space multispectral TDICCD images show that the proposed scheme significantly outperforms the CCSDS-IDC-based coder in each band.
文摘Aiming at the characteristics of the seismic exploration signals, the paper studies the image coding technology, the coding standard and algorithm, brings forward a new scheme of admixing coding for seismic data compression. Based on it, a set of seismic data compression software has been developed.
基金supported by the Shenzhen Government R&D Project under Grant No.JC200903160361A
文摘The test vector compression is a key technique to reduce IC test time and cost since the explosion of the test data of system on chip (SoC) in recent years. To reduce the bandwidth requirement between the automatic test equipment (ATE) and the CUT (circuit under test) effectively, a novel VSPTIDR (variable shifting prefix-tail identifier reverse) code for test stimulus data compression is designed. The encoding scheme is defined and analyzed in detail, and the decoder is presented and discussed. While the probability of 0 bits in the test set is greater than 0.92, the compression ratio from VSPTIDR code is better than the frequency-directed run-length (FDR) code, which can be proved by theoretical analysis and experiments. And the on-chip area overhead of VSPTIDR decoder is about 15.75 % less than the FDR decoder.
基金the Natural Science Foundation of China (No. 60472037).
文摘We studied the variation of image entropy before and after wavelet decomposition, the optimal number of wavelet decomposition layers, and the effect of wavelet bases and image frequency components on entropy. Numerous experiments were done on typical images to calculate (using Matlab) the entropy before and after wavelet transform. It was verified that, to obtain minimal entropy, a three-layer decomposition should be adopted rather than higher orders. The result achieved by using biorthogonal wavelet decomposition is better than that of the orthogonal wavelet decomposition. The results are not directly proportional to the vanishing moment, however.
基金supported in part by the National Laboratory of Radar Signal Processing Xidian Univrsity,Xi’an 710071,China。
文摘In distributed radar,most of existing radar networks operate in the tracking fusion mode which combines radar target tracks for a higher positioning accuracy.However,as the filtering covariance matrix indicating positioning accuracy often occupies many bits,the communication cost from local sensors to the fusion is not always sufficiently low for some wireless communication chan-nels.This paper studies how to compress data for distributed tracking fusion algorithms.Based on the K-singular value decomposition(K-SVD)algorithm,a sparse coding algorithm is presented to sparsely represent the filtering covariance matrix.Then the least square quantization(LSQ)algo-rithm is used to quantize the data according to the statistical characteristics of the sparse coeffi-cients.Quantized results are then coded with an arithmetic coding method which can further com-press data.Numerical results indicate that this tracking data compression algorithm drops the com-munication bandwidth to 4%at the cost of a 16%root mean squared error(RMSE)loss.