A spacecraft attitude estimation method based on electromagnetic vector sensors(EMVS)array is proposed,which employs the orthogonally constrained parallel factor(PARAFAC)algorithm and makes use of measurements of the ...A spacecraft attitude estimation method based on electromagnetic vector sensors(EMVS)array is proposed,which employs the orthogonally constrained parallel factor(PARAFAC)algorithm and makes use of measurements of the two-dimensional direction-of-arrival(2D-DOA)and polarization angles,aiming to address the issues of incomplete,asynchronous,and inaccurate third-party reference used for attitude estimation in spacecraft docking missions by employing the electromagnetic wave’s three-dimensional(3D)wave structure as a complete third-party reference.Comparative analysis with state-ofthe-art algorithms shows significant improvements in estimation accuracy and computational efficiency with this algorithm.Numerical simulations have verified the effectiveness and superiority of this method.A high-precision,reliable,and cost-effective method for rapid spacecraft attitude estimation is provided in this paper.展开更多
Space electromagnetic docking technology, free of propellant and plume contamination, offers continuous, reversible and synchronous controllability, which is widely applied in the future routine on-orbit servicing mis...Space electromagnetic docking technology, free of propellant and plume contamination, offers continuous, reversible and synchronous controllability, which is widely applied in the future routine on-orbit servicing missions. Due to the inherent nonlinearities, couplings and uncertainties of an electromagnetic force model, the dynamics and control problems of them are difficult. A new modeling approach for relative motion dynamics with intersatellite force is proposed. To resolve these control problems better, a novel nonlinear control method for soft space electro-magnetic docking is proposed, which combines merits of artificial potential function method, Lyapunov theory and extended state observer. In addition, the angular momentum management problem of space electromagnetic docking and approaches of handling it by exploiting the Earth's magnetic torque are investigated. Finally, nonlinear simulation results demonstrate the feasibility of the dynamic model and the novel nonlinear control method.展开更多
The gene iscS-3 from ,4cidithiobacillus ferrooxidans may play a central role in the delivery of sulfur to a variety of metabolic pathways in this organism. For insight into the sulfur metabolic mechanism of the bacter...The gene iscS-3 from ,4cidithiobacillus ferrooxidans may play a central role in the delivery of sulfur to a variety of metabolic pathways in this organism. For insight into the sulfur metabolic mechanism of the bacteria, an integral three-dimensional (3D) molecular structure of the protein encoded by this gene was built by homology modeling techniques, refined by molecular dynamics simulations, assessed by PROFILE-3D and PROSTAT programs and further used to search bind sites, carry out flexible docking with cofactor pyridoxal 5'-phosphate(PLP) and substrate cysteine and hereby detect its key residues. Through these procedures, the detail conformations of PLP-IscS(P-I) and cysteine-PLP-IscS(C-P-I) complexes were obtained. In P-I complex, the residues of Lys208, His106, Thr78, Ser205, His207, Asp182 and Gln185 have large interaction energies and/or hydrogen bonds fixation with PLP. In C-P-I complex, the amino group in cysteine is very near His106, Lys208 and PLP, the interaction energies for cysteine with them are very high. The above results are well consistent with those experimental facts of the homologues from other sources. Interestingly, the four residues of Glul05, Glu79, Ser203 and Hisl80 in P-I docking and the residue of Lys213 in C-P-I docking also have great interaction energies, which are fitly conservation in IscSs from all kinds of sources but have not been identified before. From these results, this gene can be confirmed at 3D level to encode the iron-sulfur cluster assembly protein IscS and subsequently play a sulfur traffic role. Furthermore, the substrate cysteine can be presumed to be effectively recruited into the active site. Finally, the above detected key residues can be conjectured to be directly responsible for the bind and/or catalysis of PLP and cysteine.展开更多
In this paper,a new kind of flexible cone composed of the thin-walled plates based on space probecone docking mechanism for small-sized spacecraft is presented.The theoretical model of docking impact dynamics,which ta...In this paper,a new kind of flexible cone composed of the thin-walled plates based on space probecone docking mechanism for small-sized spacecraft is presented.The theoretical model of docking impact dynamics,which takes into account the additional stiffness terms,is derived based on Lagrange Analytical Mechanics theory and Hertz contact theory.Finite element method is employed for the discretization of the thin-walled plate.The results show that the traditional dynamic model without considering the additional stiffness terms will be difficult to reach steady state.The method proposed in this paper can correctly predict the dynamic behavior of the system.展开更多
Gefitinib is widely used for the treatment of lung cancer in patients with sensitizing epidermal growth factor receptor mutations,but patients tend to develop resistance after an average of 10 months.Low molecular wei...Gefitinib is widely used for the treatment of lung cancer in patients with sensitizing epidermal growth factor receptor mutations,but patients tend to develop resistance after an average of 10 months.Low molecular weight heparins,such as enoxaparin,potently inhibit experimental metastasis.This study aimed to determine the potential of combined enoxaparin and gefitinib(enoxaparin+gefitinib)treatment to inhibit tumor resistance to gefitinib both in vitro and in vivo.A549 and H1975 cell migration was analyzed in wound closure and Transwell assays.Akt and extracellular signal related kinase 1/2(Erk1/2)signaling pathways were identified,and a proteomics analysis was conducted using SDSPAGE/liquid chromatography-tandem mass spectrometry analysis.Molecular interaction networks were visualized using the cytoscape bioinformatics platform.Protein expression of dedicator of cytokinesis1(DOCK1)and cytoskeleton intermediate filament vimentin were identified using an enzyme-linked immunosorbent assay,Western blotting,and small interfering RNA transfection of A549 cells.In xenograft A549-luc-C8 tumors in nude mice,enoxaparin+gefitinib inhibited tumor growth and reduced lung colony formation compared with gefitinib alone.Furthermore,the combination had stronger inhibitory effects on cell migration than either agent used individually.Additional enoxaparin administration resulted in better effective inhibition of Akt activity compared with gefitinib alone.Proteomics and network analysis implicated DOCK1 as the key node molecule.Western blot verified the effective inhibition of the expression of DOCK1 and vimentin phosphorylation by enoxaparin+gefitinib comparedwith gefitinib alone.DOCK1 knockdown confirmed its role in cell migration,Akt expression,and vimentin phosphorylation.Our data indicate that enoxaparin sensitizes gefitinib antitumor and antimigration activity in lung cancer by suppressing DOCK1 expression,Akt activity,and vimentin phosphorylation.展开更多
In search of natural renewable resource-based bioactive molecules,20 hydroxamate inhibitors were designed and synthesized using cinamaldehyde as the starting material.Their structures were characterized by FT-IR,^(1)H...In search of natural renewable resource-based bioactive molecules,20 hydroxamate inhibitors were designed and synthesized using cinamaldehyde as the starting material.Their structures were characterized by FT-IR,^(1)HNMR,^(13)C NMR,and HRMS.And in vitro antifungal activity of the target compounds against 8 tested fungi was preliminarily evaluated by the agar dilution method.The bioassay results revealed that at the concentration of 50 mg/L,the target compounds exhibited certain inhibitory activity against 8 tested fungi,in which compounds 5r(R=o,o-Cl),5c(R=m-F),5b(R=o-F)and 5p(R=o,p-Cl)displayed better inhibitory activity of 93.3%,76.8%,75.3%and 72.3%,respectively,against P.piricola than that of the positive control chlorothalonil.At the same time,3D-quantitative structure-activity relationship(3D-QSAR)study was carried out to explore the relationship of the molecular structures with their antifungal activity against P.piricola.And a reasonable and effective 3D-QSAR model(r^(2)=0.980,q^(2)=0.501)has been established.Besides,molecular docking was also performed to reveal the binding mode of the target compound 5r(R=o,o-Cl)with succinate dehydrogenase(SDH).It was found that compound 5r could be well embedded in the active pocket of the receptor protein.This showed a similar mode with SDH inhibitors(SDHI)carboxin.展开更多
文摘A spacecraft attitude estimation method based on electromagnetic vector sensors(EMVS)array is proposed,which employs the orthogonally constrained parallel factor(PARAFAC)algorithm and makes use of measurements of the two-dimensional direction-of-arrival(2D-DOA)and polarization angles,aiming to address the issues of incomplete,asynchronous,and inaccurate third-party reference used for attitude estimation in spacecraft docking missions by employing the electromagnetic wave’s three-dimensional(3D)wave structure as a complete third-party reference.Comparative analysis with state-ofthe-art algorithms shows significant improvements in estimation accuracy and computational efficiency with this algorithm.Numerical simulations have verified the effectiveness and superiority of this method.A high-precision,reliable,and cost-effective method for rapid spacecraft attitude estimation is provided in this paper.
基金supported by the National Natural Science Foundation of China(11172322)
文摘Space electromagnetic docking technology, free of propellant and plume contamination, offers continuous, reversible and synchronous controllability, which is widely applied in the future routine on-orbit servicing missions. Due to the inherent nonlinearities, couplings and uncertainties of an electromagnetic force model, the dynamics and control problems of them are difficult. A new modeling approach for relative motion dynamics with intersatellite force is proposed. To resolve these control problems better, a novel nonlinear control method for soft space electro-magnetic docking is proposed, which combines merits of artificial potential function method, Lyapunov theory and extended state observer. In addition, the angular momentum management problem of space electromagnetic docking and approaches of handling it by exploiting the Earth's magnetic torque are investigated. Finally, nonlinear simulation results demonstrate the feasibility of the dynamic model and the novel nonlinear control method.
基金Project(2004CB619201) supported by the National Basic Research Program of China Project(50321402) supported by the National Natural Science Foundation of China
文摘The gene iscS-3 from ,4cidithiobacillus ferrooxidans may play a central role in the delivery of sulfur to a variety of metabolic pathways in this organism. For insight into the sulfur metabolic mechanism of the bacteria, an integral three-dimensional (3D) molecular structure of the protein encoded by this gene was built by homology modeling techniques, refined by molecular dynamics simulations, assessed by PROFILE-3D and PROSTAT programs and further used to search bind sites, carry out flexible docking with cofactor pyridoxal 5'-phosphate(PLP) and substrate cysteine and hereby detect its key residues. Through these procedures, the detail conformations of PLP-IscS(P-I) and cysteine-PLP-IscS(C-P-I) complexes were obtained. In P-I complex, the residues of Lys208, His106, Thr78, Ser205, His207, Asp182 and Gln185 have large interaction energies and/or hydrogen bonds fixation with PLP. In C-P-I complex, the amino group in cysteine is very near His106, Lys208 and PLP, the interaction energies for cysteine with them are very high. The above results are well consistent with those experimental facts of the homologues from other sources. Interestingly, the four residues of Glul05, Glu79, Ser203 and Hisl80 in P-I docking and the residue of Lys213 in C-P-I docking also have great interaction energies, which are fitly conservation in IscSs from all kinds of sources but have not been identified before. From these results, this gene can be confirmed at 3D level to encode the iron-sulfur cluster assembly protein IscS and subsequently play a sulfur traffic role. Furthermore, the substrate cysteine can be presumed to be effectively recruited into the active site. Finally, the above detected key residues can be conjectured to be directly responsible for the bind and/or catalysis of PLP and cysteine.
基金Supported by the National Natural Science Foundation of China(91216201,11725211)
文摘In this paper,a new kind of flexible cone composed of the thin-walled plates based on space probecone docking mechanism for small-sized spacecraft is presented.The theoretical model of docking impact dynamics,which takes into account the additional stiffness terms,is derived based on Lagrange Analytical Mechanics theory and Hertz contact theory.Finite element method is employed for the discretization of the thin-walled plate.The results show that the traditional dynamic model without considering the additional stiffness terms will be difficult to reach steady state.The method proposed in this paper can correctly predict the dynamic behavior of the system.
文摘Gefitinib is widely used for the treatment of lung cancer in patients with sensitizing epidermal growth factor receptor mutations,but patients tend to develop resistance after an average of 10 months.Low molecular weight heparins,such as enoxaparin,potently inhibit experimental metastasis.This study aimed to determine the potential of combined enoxaparin and gefitinib(enoxaparin+gefitinib)treatment to inhibit tumor resistance to gefitinib both in vitro and in vivo.A549 and H1975 cell migration was analyzed in wound closure and Transwell assays.Akt and extracellular signal related kinase 1/2(Erk1/2)signaling pathways were identified,and a proteomics analysis was conducted using SDSPAGE/liquid chromatography-tandem mass spectrometry analysis.Molecular interaction networks were visualized using the cytoscape bioinformatics platform.Protein expression of dedicator of cytokinesis1(DOCK1)and cytoskeleton intermediate filament vimentin were identified using an enzyme-linked immunosorbent assay,Western blotting,and small interfering RNA transfection of A549 cells.In xenograft A549-luc-C8 tumors in nude mice,enoxaparin+gefitinib inhibited tumor growth and reduced lung colony formation compared with gefitinib alone.Furthermore,the combination had stronger inhibitory effects on cell migration than either agent used individually.Additional enoxaparin administration resulted in better effective inhibition of Akt activity compared with gefitinib alone.Proteomics and network analysis implicated DOCK1 as the key node molecule.Western blot verified the effective inhibition of the expression of DOCK1 and vimentin phosphorylation by enoxaparin+gefitinib comparedwith gefitinib alone.DOCK1 knockdown confirmed its role in cell migration,Akt expression,and vimentin phosphorylation.Our data indicate that enoxaparin sensitizes gefitinib antitumor and antimigration activity in lung cancer by suppressing DOCK1 expression,Akt activity,and vimentin phosphorylation.
文摘In search of natural renewable resource-based bioactive molecules,20 hydroxamate inhibitors were designed and synthesized using cinamaldehyde as the starting material.Their structures were characterized by FT-IR,^(1)HNMR,^(13)C NMR,and HRMS.And in vitro antifungal activity of the target compounds against 8 tested fungi was preliminarily evaluated by the agar dilution method.The bioassay results revealed that at the concentration of 50 mg/L,the target compounds exhibited certain inhibitory activity against 8 tested fungi,in which compounds 5r(R=o,o-Cl),5c(R=m-F),5b(R=o-F)and 5p(R=o,p-Cl)displayed better inhibitory activity of 93.3%,76.8%,75.3%and 72.3%,respectively,against P.piricola than that of the positive control chlorothalonil.At the same time,3D-quantitative structure-activity relationship(3D-QSAR)study was carried out to explore the relationship of the molecular structures with their antifungal activity against P.piricola.And a reasonable and effective 3D-QSAR model(r^(2)=0.980,q^(2)=0.501)has been established.Besides,molecular docking was also performed to reveal the binding mode of the target compound 5r(R=o,o-Cl)with succinate dehydrogenase(SDH).It was found that compound 5r could be well embedded in the active pocket of the receptor protein.This showed a similar mode with SDH inhibitors(SDHI)carboxin.