期刊文献+
共找到78,798篇文章
< 1 2 250 >
每页显示 20 50 100
Predicting Hepatocellular Carcinoma Using Brightness Change Curves Derived From Contrast-enhanced Ultrasound Images
1
作者 CHEN Ying-Ying JIANG Shang-Lin +3 位作者 HUANG Liang-Hui ZENG Ya-Guang WANG Xue-Hua ZHENG Wei 《生物化学与生物物理进展》 北大核心 2025年第8期2163-2172,共10页
Objective Primary liver cancer,predominantly hepatocellular carcinoma(HCC),is a significant global health issue,ranking as the sixth most diagnosed cancer and the third leading cause of cancer-related mortality.Accura... Objective Primary liver cancer,predominantly hepatocellular carcinoma(HCC),is a significant global health issue,ranking as the sixth most diagnosed cancer and the third leading cause of cancer-related mortality.Accurate and early diagnosis of HCC is crucial for effective treatment,as HCC and non-HCC malignancies like intrahepatic cholangiocarcinoma(ICC)exhibit different prognoses and treatment responses.Traditional diagnostic methods,including liver biopsy and contrast-enhanced ultrasound(CEUS),face limitations in applicability and objectivity.The primary objective of this study was to develop an advanced,lightweighted classification network capable of distinguishing HCC from other non-HCC malignancies by leveraging the automatic analysis of brightness changes in CEUS images.The ultimate goal was to create a user-friendly and cost-efficient computer-aided diagnostic tool that could assist radiologists in making more accurate and efficient clinical decisions.Methods This retrospective study encompassed a total of 161 patients,comprising 131 diagnosed with HCC and 30 with non-HCC malignancies.To achieve accurate tumor detection,the YOLOX network was employed to identify the region of interest(ROI)on both B-mode ultrasound and CEUS images.A custom-developed algorithm was then utilized to extract brightness change curves from the tumor and adjacent liver parenchyma regions within the CEUS images.These curves provided critical data for the subsequent analysis and classification process.To analyze the extracted brightness change curves and classify the malignancies,we developed and compared several models.These included one-dimensional convolutional neural networks(1D-ResNet,1D-ConvNeXt,and 1D-CNN),as well as traditional machine-learning methods such as support vector machine(SVM),ensemble learning(EL),k-nearest neighbor(KNN),and decision tree(DT).The diagnostic performance of each method in distinguishing HCC from non-HCC malignancies was rigorously evaluated using four key metrics:area under the receiver operating characteristic(AUC),accuracy(ACC),sensitivity(SE),and specificity(SP).Results The evaluation of the machine-learning methods revealed AUC values of 0.70 for SVM,0.56 for ensemble learning,0.63 for KNN,and 0.72 for the decision tree.These results indicated moderate to fair performance in classifying the malignancies based on the brightness change curves.In contrast,the deep learning models demonstrated significantly higher AUCs,with 1D-ResNet achieving an AUC of 0.72,1D-ConvNeXt reaching 0.82,and 1D-CNN obtaining the highest AUC of 0.84.Moreover,under the five-fold cross-validation scheme,the 1D-CNN model outperformed other models in both accuracy and specificity.Specifically,it achieved accuracy improvements of 3.8%to 10.0%and specificity enhancements of 6.6%to 43.3%over competing approaches.The superior performance of the 1D-CNN model highlighted its potential as a powerful tool for accurate classification.Conclusion The 1D-CNN model proved to be the most effective in differentiating HCC from non-HCC malignancies,surpassing both traditional machine-learning methods and other deep learning models.This study successfully developed a user-friendly and cost-efficient computer-aided diagnostic solution that would significantly enhances radiologists’diagnostic capabilities.By improving the accuracy and efficiency of clinical decision-making,this tool has the potential to positively impact patient care and outcomes.Future work may focus on further refining the model and exploring its integration with multimodal ultrasound data to maximize its accuracy and applicability. 展开更多
关键词 computer-aided diagnostic deep learning hepatocellular carcinoma contrast-enhanced ultrasound brightness change curve
在线阅读 下载PDF
FedCLCC:A personalized federated learning algorithm for edge cloud collaboration based on contrastive learning and conditional computing
2
作者 Kangning Yin Xinhui Ji +1 位作者 Yan Wang Zhiguo Wang 《Defence Technology(防务技术)》 2025年第1期80-93,共14页
Federated learning(FL)is a distributed machine learning paradigm for edge cloud computing.FL can facilitate data-driven decision-making in tactical scenarios,effectively addressing both data volume and infrastructure ... Federated learning(FL)is a distributed machine learning paradigm for edge cloud computing.FL can facilitate data-driven decision-making in tactical scenarios,effectively addressing both data volume and infrastructure challenges in edge environments.However,the diversity of clients in edge cloud computing presents significant challenges for FL.Personalized federated learning(pFL)received considerable attention in recent years.One example of pFL involves exploiting the global and local information in the local model.Current pFL algorithms experience limitations such as slow convergence speed,catastrophic forgetting,and poor performance in complex tasks,which still have significant shortcomings compared to the centralized learning.To achieve high pFL performance,we propose FedCLCC:Federated Contrastive Learning and Conditional Computing.The core of FedCLCC is the use of contrastive learning and conditional computing.Contrastive learning determines the feature representation similarity to adjust the local model.Conditional computing separates the global and local information and feeds it to their corresponding heads for global and local handling.Our comprehensive experiments demonstrate that FedCLCC outperforms other state-of-the-art FL algorithms. 展开更多
关键词 Federated learning Statistical heterogeneity Personalized model Conditional computing Contrastive learning
在线阅读 下载PDF
Computed tomography versus transthoracic echocardiography in the detection of complex congenial heart diseases in china:a meta-analysis
3
作者 畅智慧 LIN Kun +3 位作者 DU Xiao-li YIN Xiao-li LU Zhao 刘兆玉 《放射学实践》 2012年第11期1168-1173,共6页
Objective:To perform a meta-analysis to evaluate the diagnostic performance of computed tomography(CT) and transthoracic echocardiography(TTE) in complex congenital heart diseases(CHD) in China.Methods:MEDLINE,Cochran... Objective:To perform a meta-analysis to evaluate the diagnostic performance of computed tomography(CT) and transthoracic echocardiography(TTE) in complex congenital heart diseases(CHD) in China.Methods:MEDLINE,Cochrane library and China National Knowledge Infrastructure(CNKI) database from January 1966 to October 2010,were searched for initial studies in China.All the studies,published in English or Chinese,used TTE,CT,or both as diagnostic tests for CHD and reported the rate of true-positive,true-negative,false-positive and false-negative diagnoses of CHD from TTE and CT findings with the surgical results as the 'gold-standard'(15 studies,XX patients) were collected.The statistic software package,'Meta-Disc 1.4',was used to conduct data analysis.A covariate analysis was used to evaluate the influence of patient or study-related factors on sensitivity.Results:Pooled sensitivity for diagnosis of CHD were 95% [95% confidence interval(CI):94%~96%] for CT studies and 87%(95% CI:85%~88%) for TTE studies.The difference between the pooled sensitivity of CT and that of TTE was statistically significant(P<0.001).TTE had higher sensitivity [0.96(95% CI:0.94~0.97)] for cardiac malformation but lower sensitivity [0.78(95% CI:0.76~0.81)] for extracardiac malformation than CT.Conclusion:CT can provide added diagnostic information compared with TTE in patients with CHD in China,especially for patients suspected of extracardiac malformation. 展开更多
关键词 ECHOCARDIOGRAPHY Tomography X-ray computed Heart Defects Congenital META-ANALYSIS
在线阅读 下载PDF
Use of X-ray computed tomography to study structures and particle contacts of granite residual soil 被引量:19
4
作者 SUN Yin-lei TANG Lian-sheng 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第4期938-954,共17页
A small problem about soil particle regularization and contacts but essential to geotechnical engineering was studied.The soils sourced from Guangzhou and Xiamen were sieved into five different particle scale ranges(d... A small problem about soil particle regularization and contacts but essential to geotechnical engineering was studied.The soils sourced from Guangzhou and Xiamen were sieved into five different particle scale ranges(d<0.075 mm,0.075 mm≤d<0.1 mm,0.1 mm≤d<0.2 mm,0.2 mm≤d<0.5 mm and 0.5 mm≤d<1.0 mm)to study the structures and particle contacts of granite residual soil.The X-ray micro computed tomography method was used to reconstruct the microstructure of granite residual soil.The particle was identified and regularized using principal component analysis(PCA).The particle contacts and geometrical characteristics in 3D space were analyzed and summarized using statistical analyses.The results demonstrate that the main types of contact among the particles are face-face,face-angle,face-edge,edge-edge,edge-angle and angle-angle contacts for particle sizes less than 0.2 mm.When the particle sizes are greater than 0.2 mm,the contacts are effectively summarized as face-face,face-angle,face-edge,edge-edge,edge-angle,angle-angle,sphere-sphere,sphere-face,sphere-edge and sphere-angle contacts.The differences in porosity among the original sample,reconstructed sample and regularized sample are closely related to the water-swelling and water-disintegrable characteristics of granite residual soil. 展开更多
关键词 X-ray computed tomography granite residual soil RECONSTRUCTION REGULARIZATION particle contact
在线阅读 下载PDF
Characterization of microstructure evolution of cement paste by micro computed tomography 被引量:3
5
作者 何永佳 Jason Mote David A. Lange 《Journal of Central South University》 SCIE EI CAS 2013年第4期1115-1121,共7页
Micro computed tomography (Micro-CT) was applied to obtain three-dimensional images of the microstructure of cement paste (water-to-cement mass ratio of 0.5) at different ages. By using the Amira software, component p... Micro computed tomography (Micro-CT) was applied to obtain three-dimensional images of the microstructure of cement paste (water-to-cement mass ratio of 0.5) at different ages. By using the Amira software, component phases of the cement paste such as pores, hydration products, and unhydrated clinker particles were segmented from each other based on their 3D image grey levels; their relative contents were also calculated with the software, and the data are 61.2%, 0% and 38.8% at the beginning of hydration and 11.8%, 78.5% and 9.7% at 28 d age, respectively. The hydration degree of cement paste at different ages was compared with the experimental data acquired by loss on ignition (LOI) tests. The results show that the calculated and measured data reasonably agree with each other, which indicates that micro-CT is a useful and reliable approach to characterize the micro structure evolution of hydrating cement paste. 展开更多
关键词 Micro computed tomography (Micro-CT) 3D image MICROSTRUCTURE cement paste
在线阅读 下载PDF
Computational Simulation of Aptamer-target Binding Mechanisms
6
作者 YANG Yuan-Yuan XU Fei WU Xiu-Xiu 《中国生物化学与分子生物学报》 CAS CSCD 北大核心 2024年第11期1550-1562,共13页
Aptamers are a type of single-chain oligonucleotide that can combine with a specific target.Due to their simple preparation,easy modification,stable structure and reusability,aptamers have been widely applied as bioch... Aptamers are a type of single-chain oligonucleotide that can combine with a specific target.Due to their simple preparation,easy modification,stable structure and reusability,aptamers have been widely applied as biochemical sensors for medicine,food safety and environmental monitoring.However,there is little research on aptamer-target binding mechanisms,which limits their application and development.Computational simulation has gained much attention for revealing aptamer-target binding mechanisms at the atomic level.This work summarizes the main simulation methods used in the mechanistic analysis of aptamer-target complexes,the characteristics of binding between aptamers and different targets(metal ions,small organic molecules,biomacromolecules,cells,bacteria and viruses),the types of aptamer-target interactions and the factors influencing their strength.It provides a reference for further use of simulations in understanding aptamer-target binding mechanisms. 展开更多
关键词 computational simulation APTAMER TARGET binding mechanism intermolecular forces
在线阅读 下载PDF
Delay-optimal multi-satellite collaborative computation offloading supported by OISL in LEO satellite network
7
作者 ZHANG Tingting GUO Zijian +4 位作者 LI Bin FENG Yuan FU Qi HU Mingyu QU Yunbo 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第4期805-814,共10页
By deploying the ubiquitous and reliable coverage of low Earth orbit(LEO)satellite networks using optical inter satel-lite link(OISL),computation offloading services can be provided for any users without proximal serv... By deploying the ubiquitous and reliable coverage of low Earth orbit(LEO)satellite networks using optical inter satel-lite link(OISL),computation offloading services can be provided for any users without proximal servers,while the resource limita-tion of both computation and storage on satellites is the impor-tant factor affecting the maximum task completion time.In this paper,we study a delay-optimal multi-satellite collaborative computation offloading scheme that allows satellites to actively migrate tasks among themselves by employing the high-speed OISLs,such that tasks with long queuing delay will be served as quickly as possible by utilizing idle computation resources in the neighborhood.To satisfy the delay requirement of delay-sensi-tive task,we first propose a deadline-aware task scheduling scheme in which a priority model is constructed to sort the order of tasks being served based on its deadline,and then a delay-optimal collaborative offloading scheme is derived such that the tasks which cannot be completed locally can be migrated to other idle satellites.Simulation results demonstrate the effective-ness of our multi-satellite collaborative computation offloading strategy in reducing task complement time and improving resource utilization of the LEO satellite network. 展开更多
关键词 low Earth orbit(LEO)satellite network computation offloading task migration resource allocation
在线阅读 下载PDF
Dynamic access task scheduling of LEO constellation based on space-based distributed computing
8
作者 LIU Wei JIN Yifeng +2 位作者 ZHANG Lei GAO Zihe TAO Ying 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第4期842-854,共13页
A dynamic multi-beam resource allocation algorithm for large low Earth orbit(LEO)constellation based on on-board distributed computing is proposed in this paper.The allocation is a combinatorial optimization process u... A dynamic multi-beam resource allocation algorithm for large low Earth orbit(LEO)constellation based on on-board distributed computing is proposed in this paper.The allocation is a combinatorial optimization process under a series of complex constraints,which is important for enhancing the matching between resources and requirements.A complex algorithm is not available because that the LEO on-board resources is limi-ted.The proposed genetic algorithm(GA)based on two-dimen-sional individual model and uncorrelated single paternal inheri-tance method is designed to support distributed computation to enhance the feasibility of on-board application.A distributed system composed of eight embedded devices is built to verify the algorithm.A typical scenario is built in the system to evalu-ate the resource allocation process,algorithm mathematical model,trigger strategy,and distributed computation architec-ture.According to the simulation and measurement results,the proposed algorithm can provide an allocation result for more than 1500 tasks in 14 s and the success rate is more than 91%in a typical scene.The response time is decreased by 40%com-pared with the conditional GA. 展开更多
关键词 beam resource allocation distributed computing low Earth obbit(LEO)constellation spacecraft access task scheduling
在线阅读 下载PDF
Real-Time Monitoring Method for Cow Rumination Behavior Based on Edge Computing and Improved MobileNet v3
9
作者 ZHANG Yu LI Xiangting +4 位作者 SUN Yalin XUE Aidi ZHANG Yi JIANG Hailong SHEN Weizheng 《智慧农业(中英文)》 CSCD 2024年第4期29-41,共13页
[Objective]Real-time monitoring of cow ruminant behavior is of paramount importance for promptly obtaining relevant information about cow health and predicting cow diseases.Currently,various strategies have been propo... [Objective]Real-time monitoring of cow ruminant behavior is of paramount importance for promptly obtaining relevant information about cow health and predicting cow diseases.Currently,various strategies have been proposed for monitoring cow ruminant behavior,including video surveillance,sound recognition,and sensor monitoring methods.How‐ever,the application of edge device gives rise to the issue of inadequate real-time performance.To reduce the volume of data transmission and cloud computing workload while achieving real-time monitoring of dairy cow rumination behavior,a real-time monitoring method was proposed for cow ruminant behavior based on edge computing.[Methods]Autono‐mously designed edge devices were utilized to collect and process six-axis acceleration signals from cows in real-time.Based on these six-axis data,two distinct strategies,federated edge intelligence and split edge intelligence,were investigat‐ed for the real-time recognition of cow ruminant behavior.Focused on the real-time recognition method for cow ruminant behavior leveraging federated edge intelligence,the CA-MobileNet v3 network was proposed by enhancing the MobileNet v3 network with a collaborative attention mechanism.Additionally,a federated edge intelligence model was designed uti‐lizing the CA-MobileNet v3 network and the FedAvg federated aggregation algorithm.In the study on split edge intelli‐gence,a split edge intelligence model named MobileNet-LSTM was designed by integrating the MobileNet v3 network with a fusion collaborative attention mechanism and the Bi-LSTM network.[Results and Discussions]Through compara‐tive experiments with MobileNet v3 and MobileNet-LSTM,the federated edge intelligence model based on CA-Mo‐bileNet v3 achieved an average Precision rate,Recall rate,F1-Score,Specificity,and Accuracy of 97.1%,97.9%,97.5%,98.3%,and 98.2%,respectively,yielding the best recognition performance.[Conclusions]It is provided a real-time and effective method for monitoring cow ruminant behavior,and the proposed federated edge intelligence model can be ap‐plied in practical settings. 展开更多
关键词 cow rumination behavior real-time monitoring edge computing improved MobileNet v3 edge intelligence model Bi-LSTM
在线阅读 下载PDF
气象格点数算一体空间分析库的设计与实现 被引量:2
10
作者 王舒 徐拥军 +6 位作者 何文春 吴焕萍 高峰 刘媛媛 刘北 吕冠儒 倪学磊 《应用气象学报》 北大核心 2025年第1期121-128,共8页
气象格点数据通常以文件形式存储在分布式文件库中,业务系统在使用过程中需要将文件下载到本地,对文件解析后再进行分析计算。这种方式导致数据检索困难、响应时间长、无法满足业务在线计算及交互式应用需求。为此,2022年底国家气象信... 气象格点数据通常以文件形式存储在分布式文件库中,业务系统在使用过程中需要将文件下载到本地,对文件解析后再进行分析计算。这种方式导致数据检索困难、响应时间长、无法满足业务在线计算及交互式应用需求。为此,2022年底国家气象信息中心基于天擎空间分析库研发完成了分布式环境下气象格点数据与计算集成的数算一体数据库——Post Grid,该数据库包含数据层和算子层。数据层将气象格点数据在要素、起报、预报、空间、层次、样本等维度上的拆分后统一规范化存储,提高数据库的数据读取和分析效率。算子层通过数据库中的SQL函数实现,支持在数据库内部对格点数据进行各种操作,且算子支持分布式并行计算。性能测试和业务应用结果表明:Post Grid数据库能将传统的聚合计算服务时效由分钟级提升至毫秒级,极大提高了气象格点数据服务的性能、灵活性和数算一体能力,具有广泛应用价值。 展开更多
关键词 数算一体 气象格点数据 Post Grid 并行计算 分布式
在线阅读 下载PDF
Computational intelligence interception guidance law using online off-policy integral reinforcement learning
11
作者 WANG Qi LIAO Zhizhong 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第4期1042-1052,共11页
Missile interception problem can be regarded as a two-person zero-sum differential games problem,which depends on the solution of Hamilton-Jacobi-Isaacs(HJI)equa-tion.It has been proved impossible to obtain a closed-f... Missile interception problem can be regarded as a two-person zero-sum differential games problem,which depends on the solution of Hamilton-Jacobi-Isaacs(HJI)equa-tion.It has been proved impossible to obtain a closed-form solu-tion due to the nonlinearity of HJI equation,and many iterative algorithms are proposed to solve the HJI equation.Simultane-ous policy updating algorithm(SPUA)is an effective algorithm for solving HJI equation,but it is an on-policy integral reinforce-ment learning(IRL).For online implementation of SPUA,the dis-turbance signals need to be adjustable,which is unrealistic.In this paper,an off-policy IRL algorithm based on SPUA is pro-posed without making use of any knowledge of the systems dynamics.Then,a neural-network based online adaptive critic implementation scheme of the off-policy IRL algorithm is pre-sented.Based on the online off-policy IRL method,a computa-tional intelligence interception guidance(CIIG)law is developed for intercepting high-maneuvering target.As a model-free method,intercepting targets can be achieved through measur-ing system data online.The effectiveness of the CIIG is verified through two missile and target engagement scenarios. 展开更多
关键词 two-person zero-sum differential games Hamilton–Jacobi–Isaacs(HJI)equation off-policy integral reinforcement learning(IRL) online learning computational intelligence inter-ception guidance(CIIG)law
在线阅读 下载PDF
基于g-computation联合混合效应模型控制未测混杂因素的因果推断方法模拟研究及实例验证
12
作者 孙博然 芦文丽 陈永杰 《中国卫生统计》 CSCD 北大核心 2024年第5期691-696,共6页
目的通过模拟实验和实例验证探讨基于g-computation的联合混合效应模型(joint mixed-effects model,JMM)控制纵向研究未测混杂因素进行因果推断时的效果及性能特点。方法通过计算机模拟产生包含基线及两次随访时点的纵向数据,模拟条件... 目的通过模拟实验和实例验证探讨基于g-computation的联合混合效应模型(joint mixed-effects model,JMM)控制纵向研究未测混杂因素进行因果推断时的效果及性能特点。方法通过计算机模拟产生包含基线及两次随访时点的纵向数据,模拟条件包括样本含量、有无未测混杂因素及未测混杂效应大小,分别利用基于g-computation的JMM、线性混合效应模型、固定效应模型和纵向目标极大似然估计方法估计因果效应,通过平均绝对偏差(mean absolute deviation,MAD)、标准误、均方根误差(root mean square error,RMSE)、95%置信区间覆盖率(95%confidence interval coverage,95%CI coverage)评价比较各方法因果推断的效果。利用绝经期女性队列体检数据,应用四类模型分别估计绝经期女性血清卵泡刺激素(follicle-stimulating hormone,FSH)水平与腰椎骨密度间因果关系,对各模型在真实纵向数据中的因果推断效果进行验证。结果JMM控制未测混杂因素的因果推断准确性最佳,但稳定性略差。当研究中存在较强未测混杂效应时,仅JMM可准确估计因果效应,且其在大样本量时估计的精确性和真实性较好。结论基于g-computation的JMM可有效控制纵向研究中未测混杂因素进行近似无偏因果推断。 展开更多
关键词 纵向研究 未测混杂因素 g-computation 联合混合效应模型
在线阅读 下载PDF
算法时代的法治之路:计算法学的规范性探索 被引量:5
13
作者 李学尧 刘庄 《交大法学》 北大核心 2025年第1期86-100,共15页
本文借助法律形式主义与法律现实主义的两分范式,探讨了计算法学在法律与人工智能研究中的历史起源、理论进展与未来方向,并结合法律形式主义与法律现实主义的双重路径,系统分析了其在理论与实践中的挑战与潜力。通过回溯莱布尼茨的法... 本文借助法律形式主义与法律现实主义的两分范式,探讨了计算法学在法律与人工智能研究中的历史起源、理论进展与未来方向,并结合法律形式主义与法律现实主义的双重路径,系统分析了其在理论与实践中的挑战与潜力。通过回溯莱布尼茨的法学梦想,本文提出,尽管计算法学在消解法律不确定性方面取得显著成效,但“法律奇点论”等极端形式主义思潮仍存在理论与实践的盲点。计算法学不仅需要在规则与预测之间寻求平衡,还应通过融合认知神经科学等跨学科方法,加强其介入法律解释与规范辩论的科学性和可操作性。本文主张一种超越技术决定论的“计算法治”框架,强调法律应在“计算性”与“人性”之间找到动态平衡,从而确保技术进步与社会价值的良性互动。 展开更多
关键词 计算法学 莱布尼茨 法律奇点 计算神经科学 法律与人工智能
在线阅读 下载PDF
面向DAG任务的分布式智能计算卸载和服务缓存联合优化 被引量:1
14
作者 李云 南子煜 +2 位作者 姚枝秀 夏士超 鲜永菊 《中山大学学报(自然科学版)(中英文)》 CAS 北大核心 2025年第1期71-82,共12页
建立了一种有向无环图(DAG,directed acyclic graph)任务卸载和资源优化问题,旨在应用最大可容忍时延等约束实现系统能耗最小化。考虑到网络中计算请求高度动态、完整的系统状态信息难以获取等因素,最后使用多智能体深度确定性策略梯度(... 建立了一种有向无环图(DAG,directed acyclic graph)任务卸载和资源优化问题,旨在应用最大可容忍时延等约束实现系统能耗最小化。考虑到网络中计算请求高度动态、完整的系统状态信息难以获取等因素,最后使用多智能体深度确定性策略梯度(MADDPG,multi-agent deep deterministic policy gradient)算法来探寻最优的策略。相比于现有的任务卸载算法,MADDPG算法能够降低14.2%至40.8%的系统平均能耗,并且本地缓存命中率提高3.7%至4.1%。 展开更多
关键词 移动边缘计算 多智能体深度强化学习 计算卸载 资源分配 服务缓存
在线阅读 下载PDF
计算机模拟手术结合3D打印技术在复杂骨折手术中的应用进展 被引量:3
15
作者 杨立宇 郭文娟 +2 位作者 叶飞 张一奇 巴根 《中国医科大学学报》 北大核心 2025年第2期167-170,177,共5页
以计算机辅助设计为基础的3D打印技术能够快速制作三维立体模型,清晰显示骨折部位的解剖结构、类型和破裂程度,为了解骨折情况提供全方位的视觉化手段。该技术还能帮助医生设计个性化的植入物,选择定制的手术导向板和固定螺丝。手术医... 以计算机辅助设计为基础的3D打印技术能够快速制作三维立体模型,清晰显示骨折部位的解剖结构、类型和破裂程度,为了解骨折情况提供全方位的视觉化手段。该技术还能帮助医生设计个性化的植入物,选择定制的手术导向板和固定螺丝。手术医生通过术前模拟操作,对手术方案进行优化,提高手术的准确性和效果。本文总结了计算机模拟手术结合3D打印技术在多种骨科手术中的应用情况,并广泛阐述了3D打印技术在临床骨科领域的巨大应用潜力。 展开更多
关键词 计算机辅助设计 3D打印 复杂骨折
在线阅读 下载PDF
小型无人机视觉传感器避障方法综述 被引量:4
16
作者 王家亮 董楷 +2 位作者 顾兆军 陈辉 韩强 《西安电子科技大学学报》 北大核心 2025年第1期60-79,共20页
无人机自主飞行避障技术是无人机安全飞行和应用中最为基础和关键的技术,也是当前无人机领域的研究热点。随着深度学习在计算机视觉方向的应用,以及事件相机等视觉传感器技术的迅速发展与不断完善,基于视觉传感器的无人机自主飞行避障... 无人机自主飞行避障技术是无人机安全飞行和应用中最为基础和关键的技术,也是当前无人机领域的研究热点。随着深度学习在计算机视觉方向的应用,以及事件相机等视觉传感器技术的迅速发展与不断完善,基于视觉传感器的无人机自主飞行避障方法取得一定的进步,但目前有些研究方法在复杂场景下仍存在很大的挑战以及存在一些列亟待解决的问题,在精准性、实时性以及算法鲁棒性方面仍有改进空间。首先介绍无人机避障的相关概念及问题难点;然后将基于视觉传感器的避障算法根据采用的硬件及技术手段,具体划分为传统避障方法、基于深度学习避障方法、基于处理事件流的避障方法、基于传感器融合避障方法,和基于视觉避障的决策层避障方法,并分别介绍每类避障方法相关研究进展与研究成果,以及分析各类避障方法的优缺点;最后总结现有无人机避障算法存在的问题,并对未来研究工作进行展望。 展开更多
关键词 无人机 避障传感器 计算机视觉 事件相机
在线阅读 下载PDF
面向地震预警场景的千万量级预警信息推送服务研究 被引量:1
17
作者 郭凯 刘杰 +3 位作者 方毅 董霖 刘佳鹏 侯建民 《中国地震》 北大核心 2025年第2期339-353,共15页
面向地震预警场景中震中区域海量人口及时获得预警信息的减灾需求,解决目前每秒约数十万级别的信息推送能力瓶颈,研究了一种海量预警信息高并发分层级联广播和区域定向推送技术,实现亚秒级千万量级预警信息的推送能力。为验证方法性能,... 面向地震预警场景中震中区域海量人口及时获得预警信息的减灾需求,解决目前每秒约数十万级别的信息推送能力瓶颈,研究了一种海量预警信息高并发分层级联广播和区域定向推送技术,实现亚秒级千万量级预警信息的推送能力。为验证方法性能,采用95台高性能服务器搭建预警信息多层级联发布平台,其中45台高性能服务器模拟一千万用户进行实验。通过在CM端采用CPU核心绑定以及Zookeeper集群管理等技术,提升单服务器推送性能和集群线性增加的稳定性,在不考虑实际网络延时的情况下具备了秒级千万量级预警信息推送能力,一千万条预警信息整体推送延时在500ms以内,达到了秒级推送一千万条预警信息的性能要求,并通过区域定向推送实际环境检验进一步验证了系统推送能力。 展开更多
关键词 级联广播 定向广播 边缘计算
在线阅读 下载PDF
技术革命周期与我国算力竞争战略选择——基于DeepSeek复杂经济系统的思考 被引量:3
18
作者 黄晓野 代栓平 李克 《工业技术经济》 北大核心 2025年第4期25-31,共7页
算力是信息化、数字化、智能化时代的新质生产力,是大国博弈利器。算力竞争战略选择关乎一国能否抓住新技术新产业革命机遇,实现综合国力跃迁式增长。以技术-经济范式模型为理论依据,结合全球人工智能发展实践,本文提出我国目前处于算... 算力是信息化、数字化、智能化时代的新质生产力,是大国博弈利器。算力竞争战略选择关乎一国能否抓住新技术新产业革命机遇,实现综合国力跃迁式增长。以技术-经济范式模型为理论依据,结合全球人工智能发展实践,本文提出我国目前处于算力技术革命从导入期过渡到展开期的关键节点,算力发展战略重点应从算力基础设施转移至算力经济领域。高质量算力经济通过整体配置社会资源引领我国进入算力技术革命展开期,充分释放算力市场潜力。以DeepSeek为代表的自主可控产业链、创新性创业主体、经济生态赋能、经济逻辑引导技术创新、因地制宜发展中国式算力经济的复杂算力经济系统,为算力经济高质量发展提供了示范效应。伴随算力市场的扩张,需要提前完善算力市场机制并拓展市场功能。本文认为,应关注“杰文斯悖论(Jevons Paradox)”前瞻性布局与高质量算力经济匹配的算力设施建设;积极完善研发引领长期盈利的竞争机制,以集成创新驱动算力经济,推动完善价值共创机制,壮大算力商品市场和匹配市场。 展开更多
关键词 算力 技术革命周期 算力经济 竞争战略 DeepSeek 复杂经济系统 杰文斯悖论 新质生产力
在线阅读 下载PDF
深度学习全模型迭代算法(AIIR)临床应用价值 被引量:3
19
作者 洪楠 《中国医学影像技术》 北大核心 2025年第4期513-514,共2页
深度学习全模型迭代算法(AIIR)创新性地将全模型迭代与深度学习技术相结合,以弥补传统CT重建方法在噪声伪影抑制及纹理表现等方面的局限而提高图像质量;其用于低剂量成像及复杂解剖结构成像表现不俗,可为患者安全及精准诊断提供有力保... 深度学习全模型迭代算法(AIIR)创新性地将全模型迭代与深度学习技术相结合,以弥补传统CT重建方法在噪声伪影抑制及纹理表现等方面的局限而提高图像质量;其用于低剂量成像及复杂解剖结构成像表现不俗,可为患者安全及精准诊断提供有力保障。本文针对AIIR临床应用价值进行述评。 展开更多
关键词 体层摄影术 X线计算机 图像处理 计算机辅助 深度学习 辐射剂量 图像质量
在线阅读 下载PDF
基于FPGA的MobileNetV1目标检测加速器设计 被引量:2
20
作者 严飞 郑绪文 +2 位作者 孟川 李楚 刘银萍 《现代电子技术》 北大核心 2025年第1期151-156,共6页
卷积神经网络是目标检测中的常用算法,但由于卷积神经网络参数量和计算量巨大导致检测速度慢、功耗高,且难以部署到硬件平台,故文中提出一种采用CPU与FPGA融合结构实现MobileNetV1目标检测加速的应用方法。首先,通过设置宽度超参数和分... 卷积神经网络是目标检测中的常用算法,但由于卷积神经网络参数量和计算量巨大导致检测速度慢、功耗高,且难以部署到硬件平台,故文中提出一种采用CPU与FPGA融合结构实现MobileNetV1目标检测加速的应用方法。首先,通过设置宽度超参数和分辨率超参数以及网络参数定点化来减少网络模型的参数量和计算量;其次,对卷积层和批量归一化层进行融合,减少网络复杂性,提升网络计算速度;然后,设计一种八通道核间并行卷积计算引擎,每个通道利用行缓存乘法和加法树结构实现卷积运算;最后,利用FPGA并行计算和流水线结构,通过对此八通道卷积计算引擎合理的复用完成三种不同类型的卷积计算,减少硬件资源使用量、降低功耗。实验结果表明,该设计可以对MobileNetV1目标检测进行硬件加速,帧率可达56.7 f/s,功耗仅为0.603 W。 展开更多
关键词 卷积神经网络 目标检测 FPGA MobileNetV1 并行计算 硬件加速
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部