Focused on the dynamics problems of a lunar lander during landing process, the whole process was analysed in detail, and the linear elastic model of the moon soil was established by means of experiments-analogic metho...Focused on the dynamics problems of a lunar lander during landing process, the whole process was analysed in detail, and the linear elastic model of the moon soil was established by means of experiments-analogic method. Combining the way of elastic impact with the way of velocity replacement, the dynamics model of damping free vibration dynamics model with 3-degree of freedom(DOF) for lunar lander is obtained according to the vibration mechanics elementary theory. Based on Lagrange equations and the energy principle, the damping free vibration differential equations for the lunar lander with 3-DOF are derived and the equations are solved in simulation ways by means of ADAMS software. The conclusions obtained can be used for the design and manufacture of lunar lander.展开更多
With comprehensive considerations of the operational safety and collection efficiency for the tracked miner collecting the seafloor poly-metallic nodules, two new improved mining paths for the miner on the deep seaflo...With comprehensive considerations of the operational safety and collection efficiency for the tracked miner collecting the seafloor poly-metallic nodules, two new improved mining paths for the miner on the deep seafloor were proposed. Compared to the conventional mining path, the design principles and superiorities of the two new paths are that the miner turning with relative long radius should avoid large sinkage and high slip, so as to ensure its operational safety, while the space between its straight-line trajectories before and after the turning is optimum, which is designed as the total width of the miner, and collect nodules as more as possible, so as to ensure its collection efficiency. To realize the new mining paths, theoretical designs and quantitative calculations were carried out to determine the exact positions for the speed controls of the miner during its whole operation process. With the new dynamic model of the miner, and through regulations of the speeds of the left and right tracks of the miner on the exact motion positions according to the theoretical calculations, the two new improved mining paths for the miner on the seafloor were successfully simulated, thus the turning radius of the miner in the simulation is about 21.8 m, while the distance between the straight-line trajectories before and after the turning is about 5.2 m. The dynamic simulation results preliminarily prove the feasibility of these two new mining paths, and further can provide important theoretical guidance and useful technical reference for the practical tracked miner operation and control on the seafloor.展开更多
A mobile robot developed by Wuhan University for full-path hotline inspection on 220 kV transmission lines was presented. With 4 rotating joints and 2 translational ones, such robot is capable of traveling along non- ...A mobile robot developed by Wuhan University for full-path hotline inspection on 220 kV transmission lines was presented. With 4 rotating joints and 2 translational ones, such robot is capable of traveling along non- obstaclestraight-line segment and surmounting straight-line segment obstacles as well as transferring between two spans automatically. Lagrange’s equations were utilized to derive dynamic equations of all the links, including items of inertia, coupling inertia, Coriolis acceleration, centripetal acceleration and gravity. And a dynamic response experiment on elemental motions of robot prototype’s travelling along non-obstacle straight-line segment and surmounting obstacles was performed on 220 kV 1∶1 simulative overhanging transmission-line in laboratory. In addition, dynamic numerical simulation was conducted in the corresponding condition. Comparison and analysis on results of experiment and numerical simulation have validated theoretical model and simulation resolution. Therefore, the dynamic model formed hereunder can be used for the study of robot control.展开更多
When underground cavities are subjected to explosive stress waves,a uniquely damaged zone may appear due to the combined effect of dynamic loading and static pre-load stress.In this study,a rate-dependent two-dimensio...When underground cavities are subjected to explosive stress waves,a uniquely damaged zone may appear due to the combined effect of dynamic loading and static pre-load stress.In this study,a rate-dependent two-dimensional rock dynamic constitutive model was established to investigate the dynamic fractures of rocks under different static stress conditions.The effects of the loading rate and peak amplitude of the blasting wave under different confining pressures and the vertical compressive coefficient(K_(0))were considered.The numerical simulated results reproduced the initiation and further propagation of primary radial crack fractures,which were in agreement with the experimental results.The dynamic loading rate,peak amplitude,static vertical compressive coefficient(K_(0))and confining pressure affected the evolution of fractures around the borehole.The heterogeneity parameter(m)plays an important role in the evolution of fractures around the borehole.The crack propagation path became more discontinuous and rougher in a smallerheterogeneity parameter case.展开更多
A multi-domain nonlinear dynamic model of a proportional solenoid valve was presented.The electro-magnetic,mechanical and fluid subsystems of the valve were investigated,including their interactions.Governing equation...A multi-domain nonlinear dynamic model of a proportional solenoid valve was presented.The electro-magnetic,mechanical and fluid subsystems of the valve were investigated,including their interactions.Governing equations of the valve were derived in the form of nonlinear state equations.By comparing the simulated and measured data,the simulation model is validated with a deviation less than 15%,which can be used for the structural design and control algorithm optimization of proportional solenoid valves.展开更多
A large caliber howitzer is a complex and cumbersome assembly. Understanding its dynamics and performance attributes' sensitivity to changes in its design parameters can be a very time-consuming and expensive exer...A large caliber howitzer is a complex and cumbersome assembly. Understanding its dynamics and performance attributes' sensitivity to changes in its design parameters can be a very time-consuming and expensive exercise, as such an effort requires highly sophisticated test rigs and platforms. However, the need of such an understanding is crucially important for system designers, users, and evaluators. Some of the key performance attributes of such a system are its vertical jump, forward motion, recoil displacement, and force transmitted to ground through tires and trail after the gun has been fired. In this work, we have developed a rigid body dynamics model for a representative howitzer system, and used relatively simple experimental procedures to estimate its principal design parameters. Such procedures can help in obviating the need of expensive experimental rigs, especially in early stages of the design cycle. These parameters were subsequently incorporated into our simulation model,which was then used to predict gun performance. Finally, we conducted several sensitivity studies to understand the influence of changes in various design parameters on system performance. Their results provide useful insights in our understanding of the functioning of the overall system.展开更多
A complete geometric nonlinear formulation for rigid-flexible coupling dynamics of a flexible beam undergoing large overall motion was proposed based on virtual work principle, in which all the high-order terms relate...A complete geometric nonlinear formulation for rigid-flexible coupling dynamics of a flexible beam undergoing large overall motion was proposed based on virtual work principle, in which all the high-order terms related to coupling deformation were included in dynamic equations. Simulation examples of the flexible beam with prescribed rotation and free rotation were investigated. Numerical results show that the use of the first-order approximation coupling (FOAC) model may lead to a significant error when the flexible beam experiences large deformation or large deformation velocity. However, the correct solutions can always be obtained by using the present complete model. The difference in essence between this model and the FOAC model is revealed. These coupling high-order terms, which are ignored in FOAC model, have a remarkable effect on the dynamic behavior of the flexible body. Therefore, these terms should be included for the rigid-flexible dynamic modeling and analysis of flexible body undergoing motions with high speed.展开更多
Switching expansion reduction(SER)uses a switch valve instead of the throttle valve to realize electronically controlled pressure reduction for high pressure pneumatics.A comprehensive and interactive pneumatic simula...Switching expansion reduction(SER)uses a switch valve instead of the throttle valve to realize electronically controlled pressure reduction for high pressure pneumatics.A comprehensive and interactive pneumatic simulation model according to the experimental setup of SER has been built.The mathematical model considers heat exchanges,source air pressure and temperature,environmental temperatures and heat transfer coefficients variations.In addition,the compensation for real gas effect is used in the model building.The comparison between experiments and simulations of SER indicates that,to compensate the real gas effect in high pressure discharging process,the thermal capacity of air supply container in simulation should be less than the actual value.The higher the pressure range,the greater the deviation.Simulated and experimental results are highly consistent within pressure reduction ratios ranging from 1.4 to 20 and output air mass flow rates ranging from 3.5 to 132 g/s,which verifies the high adaptability of SER and the validity of the mathematic model and the compensation method.展开更多
As a green environmentally-friendly material,rubberised concrete(Ru C),which has the characteristics of low elastic modulus,large deformation capacity,high damping,good energy dissipation and good crack resistance,has...As a green environmentally-friendly material,rubberised concrete(Ru C),which has the characteristics of low elastic modulus,large deformation capacity,high damping,good energy dissipation and good crack resistance,has attracted extensive attention and research in the civil engineering discipline.However,most of existing studies are based on experimental tests on Ru C material properties,and there has been no numerical study based on meso-scale modelling of Ru C yet.To more comprehensively investigate the Ru C dynamic material properties without conducting intensive experimental tests,this study developed a high-fidelity meso-scale model considering coarse and fine aggregates and rubber crumbs to numerically investigate the mechanical properties of rubberised concrete under different strain rates.The meso-scale model was verified against both quasi-static compressive testing data and Split Hopkinson Pressure Bar(SHPB)dynamic testing data.Using the verified numerical model,the dynamic properties of rubberised concrete with various rubber content(0%-30%)under different strain rates were studied.The numerical results show that the developed meso-scale model can use to predict the static and dynamic properties of rubberised concrete with high accuracy.The dynamic compressive strength of the rubberised concrete increases with the increment of the strain rate,and the strain rate sensitivity increases with the rubber content ranging from 0 to 30%.Based on intensive numerical simulation data,empirical DIFs is used as a function of strain rate and rubber content to predict the dynamic strength of rubberised concrete.展开更多
The pre-crack blast technology has been used to control the induction caving area in the roof. The key is to form the pre-crack seam and predict the effect of the seam. The H-J-C blast model was built in the roof. Bas...The pre-crack blast technology has been used to control the induction caving area in the roof. The key is to form the pre-crack seam and predict the effect of the seam. The H-J-C blast model was built in the roof. Based on the theories of dynamic strength and failure criterion of dynamic rock, the rock dynamic damage and the evolution of pre-crack seam were simulated by the tensile damage and shear failure of the model. According to the actual situation of No. 92 ore body test stope at Tongkeng Mine, the formation process of the pre-crack blast seam was simulated by Ansys/Ls-dyna software, the pre-crack seam was inspected by a system of digital panoramic borehole camera. The pre-crack seam was inspected by the system of digital panoramic borehole in the roof. The results of the numerical simulation and inspection show that in the line of centers of pre-hole, the minimum of the tensile stress reaches 20 MPa, which is much larger than 13.7 MPa of the dynamic tensile strength of rock. The minimum particle vibration velocity reaches 50 cm/s, which is greater than 30-40 cm/s of the allowable vibration velocity. It is demonstrated that the rock is destroyed near the center line and the pre-crack is successfully formed by the large diameters and large distances pre-crack holes in the roof.展开更多
An efficient and real-time simulation method is proposed for the dynamic electromagnetic characteristics of cluster targets to meet the requirements of engineering practical applications.First,the coordinate transform...An efficient and real-time simulation method is proposed for the dynamic electromagnetic characteristics of cluster targets to meet the requirements of engineering practical applications.First,the coordinate transformation method is used to establish a geometric model of the observation scene,which is described by the azimuth angles and elevation angles of the radar in the target reference frame and the attitude angles of the target in the radar reference frame.Then,an approach for dynamic electromagnetic scattering simulation is proposed.Finally,a fast-computing method based on sparsity in the time domain,space domain,and frequency domain is proposed.The method analyzes the sparsity-based dynamic scattering characteristic of the typical cluster targets.The error between the sparsity-based method and the benchmark is small,proving the effectiveness of the proposed method.展开更多
文摘Focused on the dynamics problems of a lunar lander during landing process, the whole process was analysed in detail, and the linear elastic model of the moon soil was established by means of experiments-analogic method. Combining the way of elastic impact with the way of velocity replacement, the dynamics model of damping free vibration dynamics model with 3-degree of freedom(DOF) for lunar lander is obtained according to the vibration mechanics elementary theory. Based on Lagrange equations and the energy principle, the damping free vibration differential equations for the lunar lander with 3-DOF are derived and the equations are solved in simulation ways by means of ADAMS software. The conclusions obtained can be used for the design and manufacture of lunar lander.
基金Project(DYXM-115-04-02-01) supported by the National Deep-sea Technology Project of Development and Research, ChinaProject(2011QNZT058) supported by the Fundamental Research Funds for the Central Universities, ChinaProject(51105386) supported by the National Natural Science Foundation of China
文摘With comprehensive considerations of the operational safety and collection efficiency for the tracked miner collecting the seafloor poly-metallic nodules, two new improved mining paths for the miner on the deep seafloor were proposed. Compared to the conventional mining path, the design principles and superiorities of the two new paths are that the miner turning with relative long radius should avoid large sinkage and high slip, so as to ensure its operational safety, while the space between its straight-line trajectories before and after the turning is optimum, which is designed as the total width of the miner, and collect nodules as more as possible, so as to ensure its collection efficiency. To realize the new mining paths, theoretical designs and quantitative calculations were carried out to determine the exact positions for the speed controls of the miner during its whole operation process. With the new dynamic model of the miner, and through regulations of the speeds of the left and right tracks of the miner on the exact motion positions according to the theoretical calculations, the two new improved mining paths for the miner on the seafloor were successfully simulated, thus the turning radius of the miner in the simulation is about 21.8 m, while the distance between the straight-line trajectories before and after the turning is about 5.2 m. The dynamic simulation results preliminarily prove the feasibility of these two new mining paths, and further can provide important theoretical guidance and useful technical reference for the practical tracked miner operation and control on the seafloor.
文摘A mobile robot developed by Wuhan University for full-path hotline inspection on 220 kV transmission lines was presented. With 4 rotating joints and 2 translational ones, such robot is capable of traveling along non- obstaclestraight-line segment and surmounting straight-line segment obstacles as well as transferring between two spans automatically. Lagrange’s equations were utilized to derive dynamic equations of all the links, including items of inertia, coupling inertia, Coriolis acceleration, centripetal acceleration and gravity. And a dynamic response experiment on elemental motions of robot prototype’s travelling along non-obstacle straight-line segment and surmounting obstacles was performed on 220 kV 1∶1 simulative overhanging transmission-line in laboratory. In addition, dynamic numerical simulation was conducted in the corresponding condition. Comparison and analysis on results of experiment and numerical simulation have validated theoretical model and simulation resolution. Therefore, the dynamic model formed hereunder can be used for the study of robot control.
基金Projects(51878190,51779031,51678170)supported by the National Natural Science Foundation of China。
文摘When underground cavities are subjected to explosive stress waves,a uniquely damaged zone may appear due to the combined effect of dynamic loading and static pre-load stress.In this study,a rate-dependent two-dimensional rock dynamic constitutive model was established to investigate the dynamic fractures of rocks under different static stress conditions.The effects of the loading rate and peak amplitude of the blasting wave under different confining pressures and the vertical compressive coefficient(K_(0))were considered.The numerical simulated results reproduced the initiation and further propagation of primary radial crack fractures,which were in agreement with the experimental results.The dynamic loading rate,peak amplitude,static vertical compressive coefficient(K_(0))and confining pressure affected the evolution of fractures around the borehole.The heterogeneity parameter(m)plays an important role in the evolution of fractures around the borehole.The crack propagation path became more discontinuous and rougher in a smallerheterogeneity parameter case.
基金Project(2008ZHZX1A0502) supported by the Independence Innovation Achievements Transformation Crucial Special Program of Shandong Province,China
文摘A multi-domain nonlinear dynamic model of a proportional solenoid valve was presented.The electro-magnetic,mechanical and fluid subsystems of the valve were investigated,including their interactions.Governing equations of the valve were derived in the form of nonlinear state equations.By comparing the simulated and measured data,the simulation model is validated with a deviation less than 15%,which can be used for the structural design and control algorithm optimization of proportional solenoid valves.
文摘A large caliber howitzer is a complex and cumbersome assembly. Understanding its dynamics and performance attributes' sensitivity to changes in its design parameters can be a very time-consuming and expensive exercise, as such an effort requires highly sophisticated test rigs and platforms. However, the need of such an understanding is crucially important for system designers, users, and evaluators. Some of the key performance attributes of such a system are its vertical jump, forward motion, recoil displacement, and force transmitted to ground through tires and trail after the gun has been fired. In this work, we have developed a rigid body dynamics model for a representative howitzer system, and used relatively simple experimental procedures to estimate its principal design parameters. Such procedures can help in obviating the need of expensive experimental rigs, especially in early stages of the design cycle. These parameters were subsequently incorporated into our simulation model,which was then used to predict gun performance. Finally, we conducted several sensitivity studies to understand the influence of changes in various design parameters on system performance. Their results provide useful insights in our understanding of the functioning of the overall system.
基金Project(10772113) supported by the National Natural Science Foundation of China
文摘A complete geometric nonlinear formulation for rigid-flexible coupling dynamics of a flexible beam undergoing large overall motion was proposed based on virtual work principle, in which all the high-order terms related to coupling deformation were included in dynamic equations. Simulation examples of the flexible beam with prescribed rotation and free rotation were investigated. Numerical results show that the use of the first-order approximation coupling (FOAC) model may lead to a significant error when the flexible beam experiences large deformation or large deformation velocity. However, the correct solutions can always be obtained by using the present complete model. The difference in essence between this model and the FOAC model is revealed. These coupling high-order terms, which are ignored in FOAC model, have a remarkable effect on the dynamic behavior of the flexible body. Therefore, these terms should be included for the rigid-flexible dynamic modeling and analysis of flexible body undergoing motions with high speed.
基金Project(51205421)supported by the National Natural Science Foundation of ChinaProject(2012M521647)supported by the Postdoctoral Science Foundation of China
文摘Switching expansion reduction(SER)uses a switch valve instead of the throttle valve to realize electronically controlled pressure reduction for high pressure pneumatics.A comprehensive and interactive pneumatic simulation model according to the experimental setup of SER has been built.The mathematical model considers heat exchanges,source air pressure and temperature,environmental temperatures and heat transfer coefficients variations.In addition,the compensation for real gas effect is used in the model building.The comparison between experiments and simulations of SER indicates that,to compensate the real gas effect in high pressure discharging process,the thermal capacity of air supply container in simulation should be less than the actual value.The higher the pressure range,the greater the deviation.Simulated and experimental results are highly consistent within pressure reduction ratios ranging from 1.4 to 20 and output air mass flow rates ranging from 3.5 to 132 g/s,which verifies the high adaptability of SER and the validity of the mathematic model and the compensation method.
文摘As a green environmentally-friendly material,rubberised concrete(Ru C),which has the characteristics of low elastic modulus,large deformation capacity,high damping,good energy dissipation and good crack resistance,has attracted extensive attention and research in the civil engineering discipline.However,most of existing studies are based on experimental tests on Ru C material properties,and there has been no numerical study based on meso-scale modelling of Ru C yet.To more comprehensively investigate the Ru C dynamic material properties without conducting intensive experimental tests,this study developed a high-fidelity meso-scale model considering coarse and fine aggregates and rubber crumbs to numerically investigate the mechanical properties of rubberised concrete under different strain rates.The meso-scale model was verified against both quasi-static compressive testing data and Split Hopkinson Pressure Bar(SHPB)dynamic testing data.Using the verified numerical model,the dynamic properties of rubberised concrete with various rubber content(0%-30%)under different strain rates were studied.The numerical results show that the developed meso-scale model can use to predict the static and dynamic properties of rubberised concrete with high accuracy.The dynamic compressive strength of the rubberised concrete increases with the increment of the strain rate,and the strain rate sensitivity increases with the rubber content ranging from 0 to 30%.Based on intensive numerical simulation data,empirical DIFs is used as a function of strain rate and rubber content to predict the dynamic strength of rubberised concrete.
基金Project(2006BAB02A02)supported by the National Key Technology R&D Program for the 11th Five-year Plan of ChinaProject(09JJ4025)supported by the National Natural Science Foundation of Hunan Province,ChinaProject(51074178)supported by the National Natural Science Foundation of China
文摘The pre-crack blast technology has been used to control the induction caving area in the roof. The key is to form the pre-crack seam and predict the effect of the seam. The H-J-C blast model was built in the roof. Based on the theories of dynamic strength and failure criterion of dynamic rock, the rock dynamic damage and the evolution of pre-crack seam were simulated by the tensile damage and shear failure of the model. According to the actual situation of No. 92 ore body test stope at Tongkeng Mine, the formation process of the pre-crack blast seam was simulated by Ansys/Ls-dyna software, the pre-crack seam was inspected by a system of digital panoramic borehole camera. The pre-crack seam was inspected by the system of digital panoramic borehole in the roof. The results of the numerical simulation and inspection show that in the line of centers of pre-hole, the minimum of the tensile stress reaches 20 MPa, which is much larger than 13.7 MPa of the dynamic tensile strength of rock. The minimum particle vibration velocity reaches 50 cm/s, which is greater than 30-40 cm/s of the allowable vibration velocity. It is demonstrated that the rock is destroyed near the center line and the pre-crack is successfully formed by the large diameters and large distances pre-crack holes in the roof.
文摘An efficient and real-time simulation method is proposed for the dynamic electromagnetic characteristics of cluster targets to meet the requirements of engineering practical applications.First,the coordinate transformation method is used to establish a geometric model of the observation scene,which is described by the azimuth angles and elevation angles of the radar in the target reference frame and the attitude angles of the target in the radar reference frame.Then,an approach for dynamic electromagnetic scattering simulation is proposed.Finally,a fast-computing method based on sparsity in the time domain,space domain,and frequency domain is proposed.The method analyzes the sparsity-based dynamic scattering characteristic of the typical cluster targets.The error between the sparsity-based method and the benchmark is small,proving the effectiveness of the proposed method.