建立了用偏最小二乘(partial least squares,PLS)与人工神经网络(artificial neural networks,ANN)联用对饲料样品同时测定水分、灰分、蛋白质、磷含量的预测校正模型。光谱数据用二阶微分及标准归一化处理(SNV),用PLS法将原始数据压缩...建立了用偏最小二乘(partial least squares,PLS)与人工神经网络(artificial neural networks,ANN)联用对饲料样品同时测定水分、灰分、蛋白质、磷含量的预测校正模型。光谱数据用二阶微分及标准归一化处理(SNV),用PLS法将原始数据压缩提取前10个主成分与2个特征峰值作为12个输入向量,采用单隐层的反向传播人工神经网络(Back-Propagation Network,BP),确定中间层的神经元个数为23,初始训练迭代次数为1000。PLS-BP模型对样品四个组分含量的预测决定系数(r2)分别为:0.9950,0.9980,0.9990和0.9670;样品平行扫描光谱预测值的标准偏差分别为:0.02774,0.04853,0.03292和0.02204。展开更多