In order to visualize the 3-D field of explosion and describe the complex physical phenomena of explosion, the 3-D data resulting from numerical simulation by 3-D multi-material in cell (MMIC), and the application of ...In order to visualize the 3-D field of explosion and describe the complex physical phenomena of explosion, the 3-D data resulting from numerical simulation by 3-D multi-material in cell (MMIC), and the application of volume visualization is explored, based on the characteristics of explosion and shock. Based on this, a visualization system for 3-D explosion--ViSC3D is designed. Approaches for the visualization of 3-D field of explosion are presented. The algorithm and the functions of ViSC3D are also presented. ViSC3D is thus a useful tool to observe and analyze either the full picture or the details of a 3-D field of explosion, that are difficult to observe and analyze directly. With ViSC3D, the field of explosion between the hill slopes is visualized. The cutaway views and 2-D slices are also given. The full picture and partial details of 3-D field of explosion can be observed clearly. Furthermore, ViSC3D can be used to visualize other similar 3-D data fields.展开更多
Until now, it has been difficult to obtain on-line three-dimensional (3-D) temperature distribution information which can reflect the overall combustion condition in the furnace of a coal-fired power plant boiler. A c...Until now, it has been difficult to obtain on-line three-dimensional (3-D) temperature distribution information which can reflect the overall combustion condition in the furnace of a coal-fired power plant boiler. A combustion monitoring system is introduced which can solve the problem efficiently. Through this system, the 3-D temperature distribution in a coal-fired boiler furnace can be obtained using a novel flame image processing technique. Briefly, we first outline the visualization principle. Then, the hardware and software design of the system in a 300 MW twin-furnace coal-fired boiler are introduced in detail. The visualization of the 3-D temperature distribution in the twin-furnace boiler is realized with an industrial computer and the Distributed Control System (DCS) of the boiler. The practical operation of the system shows that it can provide valuable combustion information of a furnace and is useful for the combustion diagnosis and adjustment in coal-fired power plants.展开更多
This paper presents a method to reconstruct 3-D models of trees from terrestrial laser scan(TLS)point clouds.This method uses the weighted locally optimal projection(WLOP)and the AdTree method to reconstruct detailed ...This paper presents a method to reconstruct 3-D models of trees from terrestrial laser scan(TLS)point clouds.This method uses the weighted locally optimal projection(WLOP)and the AdTree method to reconstruct detailed 3-D tree models.To improve its representation accuracy,the WLOP algorithm is introduced to consolidate the point cloud.Its reconstruction accuracy is tested using a dataset of ten trees,and the one-sided Hausdorff distances between the input point clouds and the resulting 3-D models are measured.The experimental results show that the optimal projection modeling method has an average one-sided Hausdorff distance(mean)lower by 30.74%and 6.43%compared with AdTree and AdQSM methods,respectively.Furthermore,it has an average one-sided Hausdorff distance(RMS)lower by 29.95%and 12.28%compared with AdTree and AdQSM methods.Results show that the 3-D model generated fits closely to the input point cloud data and ensures a high geometrical accuracy.展开更多
In order to safely exploit coal resource, protection coal pillars must be prepared in coal mines. Some correlative parameters of protection coal pillar are calculated by Drop face and Drop line methods. Models of prot...In order to safely exploit coal resource, protection coal pillars must be prepared in coal mines. Some correlative parameters of protection coal pillar are calculated by Drop face and Drop line methods. Models of protecting surface objects and coal pillars are established by TIN modeling and object-oriented technique. By using ACCESS2000as the database and the VC++ and OpenGL as the language, the calculation of protective coal pillars is realized and the 3D-visulizaiton system for protected objects on ground surface and for coal pillars is developed. The system can obtain the data of characteristic points on the surface interactively from the digitized mine topography map, constructing 3D model automatically. It can also obtain the interrelated parameters of the coal seam and drill hole data from existing geolog!cal surveying database to calculate the location, surface area and the total coal columns. The whole process can be computed quickly and accurately. And the 3D visualization system was applied in a mine, showing that the system solve the problem of complex calculation, not only realized the automatic 3D mapping and visualization of coal pillars for buildings protection, but also greatly improves the working efficiency.展开更多
A micro mechanical model is carried out to predict micro stresses and macro elastic properties of 3-D woven composites. A unit cell is composed of two phases. One is fiber yarn and the other is resin or fiber yarn in ...A micro mechanical model is carried out to predict micro stresses and macro elastic properties of 3-D woven composites. A unit cell is composed of two phases. One is fiber yarn and the other is resin or fiber yarn in transverse. The additional shearing introduced by bending of fiber yarn is considered. The method to determine the microstructure is also discussed. This model is applied to the analysis of a 3-D woven graphite/epoxy composite. Micro stresses of the cell are studied, and then macro modulus is obtained by employing the average method. The predictions agree well with experimental results.展开更多
文摘In order to visualize the 3-D field of explosion and describe the complex physical phenomena of explosion, the 3-D data resulting from numerical simulation by 3-D multi-material in cell (MMIC), and the application of volume visualization is explored, based on the characteristics of explosion and shock. Based on this, a visualization system for 3-D explosion--ViSC3D is designed. Approaches for the visualization of 3-D field of explosion are presented. The algorithm and the functions of ViSC3D are also presented. ViSC3D is thus a useful tool to observe and analyze either the full picture or the details of a 3-D field of explosion, that are difficult to observe and analyze directly. With ViSC3D, the field of explosion between the hill slopes is visualized. The cutaway views and 2-D slices are also given. The full picture and partial details of 3-D field of explosion can be observed clearly. Furthermore, ViSC3D can be used to visualize other similar 3-D data fields.
基金Project 50636010 supported by the National Natural Science Foundation of China
文摘Until now, it has been difficult to obtain on-line three-dimensional (3-D) temperature distribution information which can reflect the overall combustion condition in the furnace of a coal-fired power plant boiler. A combustion monitoring system is introduced which can solve the problem efficiently. Through this system, the 3-D temperature distribution in a coal-fired boiler furnace can be obtained using a novel flame image processing technique. Briefly, we first outline the visualization principle. Then, the hardware and software design of the system in a 300 MW twin-furnace coal-fired boiler are introduced in detail. The visualization of the 3-D temperature distribution in the twin-furnace boiler is realized with an industrial computer and the Distributed Control System (DCS) of the boiler. The practical operation of the system shows that it can provide valuable combustion information of a furnace and is useful for the combustion diagnosis and adjustment in coal-fired power plants.
基金supported in part by the National Natural Science Foundation of China(Nos.42271343,42177387)the Fund of State Key Laboratory of Remote Sensing Information and Image Analysis Technology of Beijing Research Institute of Uranium Geology under(No.6142A010403)
文摘This paper presents a method to reconstruct 3-D models of trees from terrestrial laser scan(TLS)point clouds.This method uses the weighted locally optimal projection(WLOP)and the AdTree method to reconstruct detailed 3-D tree models.To improve its representation accuracy,the WLOP algorithm is introduced to consolidate the point cloud.Its reconstruction accuracy is tested using a dataset of ten trees,and the one-sided Hausdorff distances between the input point clouds and the resulting 3-D models are measured.The experimental results show that the optimal projection modeling method has an average one-sided Hausdorff distance(mean)lower by 30.74%and 6.43%compared with AdTree and AdQSM methods,respectively.Furthermore,it has an average one-sided Hausdorff distance(RMS)lower by 29.95%and 12.28%compared with AdTree and AdQSM methods.Results show that the 3-D model generated fits closely to the input point cloud data and ensures a high geometrical accuracy.
基金Projects 59904001 supported by National Natural Science Foundation of China
文摘In order to safely exploit coal resource, protection coal pillars must be prepared in coal mines. Some correlative parameters of protection coal pillar are calculated by Drop face and Drop line methods. Models of protecting surface objects and coal pillars are established by TIN modeling and object-oriented technique. By using ACCESS2000as the database and the VC++ and OpenGL as the language, the calculation of protective coal pillars is realized and the 3D-visulizaiton system for protected objects on ground surface and for coal pillars is developed. The system can obtain the data of characteristic points on the surface interactively from the digitized mine topography map, constructing 3D model automatically. It can also obtain the interrelated parameters of the coal seam and drill hole data from existing geolog!cal surveying database to calculate the location, surface area and the total coal columns. The whole process can be computed quickly and accurately. And the 3D visualization system was applied in a mine, showing that the system solve the problem of complex calculation, not only realized the automatic 3D mapping and visualization of coal pillars for buildings protection, but also greatly improves the working efficiency.
文摘A micro mechanical model is carried out to predict micro stresses and macro elastic properties of 3-D woven composites. A unit cell is composed of two phases. One is fiber yarn and the other is resin or fiber yarn in transverse. The additional shearing introduced by bending of fiber yarn is considered. The method to determine the microstructure is also discussed. This model is applied to the analysis of a 3-D woven graphite/epoxy composite. Micro stresses of the cell are studied, and then macro modulus is obtained by employing the average method. The predictions agree well with experimental results.