期刊文献+
共找到68,110篇文章
< 1 2 250 >
每页显示 20 50 100
Ru⁃doped Co_(3)O_(4)/reduced graphene oxide:Preparation and electrocatalytic oxygen evolution property 被引量:1
1
作者 TIAN Tian ZHOU Meng +5 位作者 WEI Jiale LIU Yize MO Yifan YE Yuhan JIA Wenzhi HE Bin 《无机化学学报》 北大核心 2025年第2期385-394,共10页
Binary composites(ZIF-67/rGO)were synthesized by one-step precipitation method using cobalt nitrate hexahydrate as metal source,2-methylimidazole as organic ligand,and reduced graphene oxide(rGO)as carbon carrier.Then... Binary composites(ZIF-67/rGO)were synthesized by one-step precipitation method using cobalt nitrate hexahydrate as metal source,2-methylimidazole as organic ligand,and reduced graphene oxide(rGO)as carbon carrier.Then Ru3+was introduced for ion exchange,and the porous Ru-doped Co_(3)O_(4)/rGO(Ru-Co_(3)O_(4)/rGO)composite electrocatalyst was prepared by annealing.The phase structure,morphology,and valence state of the catalyst were analyzed by X-ray powder diffraction(XRD),scanning electron microscope(SEM),transmission electron microscopy(TEM),and X-ray photoelectron spectroscopy(XPS).In 1 mol·L^(-1)KOH,the oxygen evolution reaction(OER)performance of the catalyst was measured by linear sweep voltammetry,cyclic voltammetry,and chronoamperometry.The results show that the combination of Ru doping and rGO provides a fast channel for collaborative electron transfer.At the same time,rGO as a carbon carrier can improve the electrical conductivity of Ru-Co_(3)O_(4)particles,and the uniformly dispersed nanoparticles enable the reactants to diffuse freely on the catalyst.The results showed that the electrochemical performance of Ru-Co_(3)O_(4)/rGO was much better than that of Co_(3)O_(4)/rGO,and the overpotential of Ru-Co_(3)O_(4)/rGO was 363.5 mV at the current density of 50 mA·cm^(-2). 展开更多
关键词 metal-organic framework GRAPHENE ELECTROCATALYST oxygen evolution reaction
在线阅读 下载PDF
Impact of Oxygen Vacancy on Performance of Amorphous InGaZnO Based Schottky Barrier Diode 被引量:1
2
作者 JIA Bin TONG Xiaowen +3 位作者 HAN Zikang QIN Ming WANG Lifeng HUANG Xiaodong 《发光学报》 北大核心 2025年第3期412-420,共9页
Rectifying circuit,as a crucial component for converting alternating current into direct current,plays a pivotal role in energy harvesting microsystems.Traditional silicon-based or germanium-based rectifier diodes hin... Rectifying circuit,as a crucial component for converting alternating current into direct current,plays a pivotal role in energy harvesting microsystems.Traditional silicon-based or germanium-based rectifier diodes hinder system integration due to their specific manufacturing processes.Conversely,metal oxide diodes,with their simple fabrication techniques,offer advantages for system integration.The oxygen vacancy defect of oxide semiconductor will greatly affect the electrical performance of the device,so the performance of the diode can be effectively controlled by adjusting the oxygen vacancy concentration.This study centers on optimizing the performance of diodes by modulating the oxygen vacancy concentration within InGaZnO films through control of oxygen flows during the sputtering process.Experimental results demonstrate that the diode exhibits a forward current density of 43.82 A·cm^(−2),with a rectification ratio of 6.94×10^(4),efficiently rectifying input sine signals with 1 kHz frequency and 5 V magnitude.These results demonstrate its potential in energy conversion and management.By adjusting the oxygen vacancy,a methodology is provided for optimizing the performance of rectifying diodes. 展开更多
关键词 INGAZNO Schottky barrier diode oxygen vacancy rectifying performance
在线阅读 下载PDF
Metal-organic framework-derived sulfur-doped iron-cobalt tannate nanorods for efficient oxygen evolution reaction performance 被引量:1
3
作者 ZHAI Haoying WEN Lanzong +3 位作者 LIAO Wenjie LI Qin ZHOU Wenjun CAO Kun 《无机化学学报》 北大核心 2025年第5期1037-1048,共12页
Sulfur-doped iron-cobalt tannate nanorods(S-FeCoTA)derived from metal-organic frameworks(MOFs)as electrocatalysts were synthesized via a one-step hydrothermal method.The optimized S-FeCoTA was interlaced by loose nano... Sulfur-doped iron-cobalt tannate nanorods(S-FeCoTA)derived from metal-organic frameworks(MOFs)as electrocatalysts were synthesized via a one-step hydrothermal method.The optimized S-FeCoTA was interlaced by loose nanorods,which had many voids.The S-FeCoTA catalysts exhibited excellent electrochemical oxygen evolution reaction(OER)performance with a low overpotential of 273 mV at 10 mA·cm^(-2)and a small Tafel slope of 36 mV·dec^(-1)in 1 mol·L^(-1)KOH.The potential remained at 1.48 V(vs RHE)at 10 mA·cm^(-2)under continuous testing for 15 h,implying that S-FeCoTA had good stability.The Faraday efficiency of S-FeCoTA was 94%.The outstanding OER activity of S-FeCoTA is attributed to the synergistic effects among S,Fe,and Co,thus promoting electron transfer,reducing the reaction kinetic barrier,and enhancing the OER performance. 展开更多
关键词 hydrothermal method tannic acid metal‑organic framework ELECTROCATALYSIS oxygen evolution reaction
在线阅读 下载PDF
基于light-oxygen-voltage(LOV)结构域光敏剂的细胞毒性研究
4
作者 许爽 万奔 +1 位作者 沙娜 赵开弘 《生物化学与生物物理进展》 北大核心 2025年第2期487-500,共14页
目的光敏剂被特定波长的光激发后,产生的活性氧类能破坏细胞组织,介导细胞死亡,对微生物感染、肿瘤等相关疾病的治疗具有重要意义。方法基于粳稻类向光素1B(Oryza sativa japonica phototropin-1B-like)的LOV(lightoxygen-voltage)结构... 目的光敏剂被特定波长的光激发后,产生的活性氧类能破坏细胞组织,介导细胞死亡,对微生物感染、肿瘤等相关疾病的治疗具有重要意义。方法基于粳稻类向光素1B(Oryza sativa japonica phototropin-1B-like)的LOV(lightoxygen-voltage)结构域,设计得到光敏剂LovPSO2及其突变体LovPRO2。在445 nm、70μmol·m^(-2)·s^(-1)蓝光照射下,每隔2 min测量LovPSO2和LovPRO2的单线态氧产量,持续10 min,每隔1 min测量其超氧阴离子产量,持续5 min,并研究温度、光照对其稳定性的影响,最后将其转入E.coli BL21(DE3)和HeLa细胞中表达并分析光毒性效果。结果在445 nm、70μmol·m^(-2)·s^(-1)蓝光照射下,LovPSO2是一种能产生大量单线态氧的Ⅱ型光敏剂(ΦΔ=0.61),LovPRO2是一种能够同时产生单线态氧和超氧阴离子的光敏剂。蛋白质稳定性分析结果表明,LovPSO2和LovPRO2具有较好的温度稳定性,其中LovPRO2的光稳定性更好。蛋白质的光毒性分析结果表明,445 nm、30 mW/cm^(2)蓝光照射30 min后,LovPSO2和LovPRO2对E.coli BL21(DE3)菌株有较好的光毒性,致死率高达90%。结论LovPSO2和LovPRO2可作为抗菌光敏剂,在食品和医疗等方面均有较为广阔的应用前景。 展开更多
关键词 光敏剂 活性氧类 单线态氧 超氧阴离子
在线阅读 下载PDF
Recent Advances in Non-Enzymatic Electrochemical Sensors for Theophylline Detection
5
作者 Ernis Gustria Putri Yulia M T A +5 位作者 Syauqi Muhammad Iqbal Jiwanti Prastika Krisma Hartati Yeni Wahyuni Kondo Takeshi Anjani Qonita Kurnia Gunlazuardi Jarnuzi 《电化学(中英文)》 北大核心 2025年第3期1-24,共24页
Detection of target analytes at low concentrations is significant in various fields,including pharmaceuticals,healthcare,and environmental protection.Theophylline(TP),a natural alkaloid used as a bronchodilator to tre... Detection of target analytes at low concentrations is significant in various fields,including pharmaceuticals,healthcare,and environmental protection.Theophylline(TP),a natural alkaloid used as a bronchodilator to treat respiratory disorders such as asthma,bronchitis,and emphysema,has a narrow therapeutic window with a safe plasma concentration ranging from 55.5-111.0μmol·L^(-1)in adults.Accurate monitoring of TP levels is essential because too low or too high can cause se-rious side effects.In this regard,non-enzymatic electrochemical sensors offer a practical solution with rapidity,portability,and high sensitivity.This article aims to provide a comprehensive review of the recent developments of non-enzymatic electrochemical sensors for TP detection,highlighting the basic principles,electro-oxidation mechanisms,catalytic effects,and the role of modifying materials on electrode performance.Carbon-based electrodes such as glassy carbon electrodes(GCEs),carbon paste electrodes(CPEs),and carbon screen-printed electrodes(SPCEs)have become the primary choices for non-enzymatic sensors due to their chemical stability,low cost,and flexibility in modification.This article identifies the sig-nificant contribution of various modifying materials,including nanomaterials such as carbon nanotubes(CNTs),graphene,metal oxides,and multi-element nanocomposites.These modifications enhance sensors’electron transfer,sensitivity,and selectivity in detecting TP at low concentrations in complex media such as blood plasma and pharmaceutical samples.The electro-oxidation mechanism of TP is also discussed in depth,emphasizing the hydroxyl and carbonyl reaction pathways strongly influenced by pH and electrode materials.These mechanisms guide the selection of the appropriate electrode ma-terial for a particular application.The main contribution of this article is to identify superior modifying materials that can improve the performance of non-enzymatic electrochemical sensors.In a recent study,the combination of multi-element nanocomposites based on titanium dioxide(TiO_(2)),CNTs,and gold nanoparticles(AuNPs)resulted in the lowest detection limit of 3×10^(-5)μmol·L^(-1),reflecting the great potential of these materials for developing high-performance electrochemical sensors.The main conclusion of this article is the importance of a multidisciplinary approach in electrode material design to support the sensitivity and selectivity of TP detection.In addition,there is still a research gap in understanding TP’s more detailed oxidation mechanism,especially under pH variations and complex environments.Therefore,further research on electrode modification and analysis of the TP oxidation mechanism are urgently needed to improve the accuracy and sta-bility of the sensor while expanding its applications in pharmaceutical monitoring and medical diagnostics.By integrating various innovative materials and technical approaches,this review is expected to be an essential reference for developing efficient and affordable non-enzymatic electrochemical sensors. 展开更多
关键词 Theophylline detection Non-enzymatic sensors Electrochemical sensors Modifier electrode Reaction mechanism
在线阅读 下载PDF
Design optimization of a sensitivity-enhanced tilt sensor based on femtosecond fiber bragg grating
6
作者 Nutsuglo Theophilus GUO Yong-xing +3 位作者 ZHOU Wan-huan YU Hai-sheng REN Ru-hua SHEN Shun-an 《中国光学(中英文)》 北大核心 2025年第4期908-920,共13页
Aiming at the requirement for high-precision tilt monitoring in the field of structural health monitoring(SHM),this paper proposes a sensitivity-enhanced tilt sensor based on a femtosecond fiber Bragg grating(FBG).Fir... Aiming at the requirement for high-precision tilt monitoring in the field of structural health monitoring(SHM),this paper proposes a sensitivity-enhanced tilt sensor based on a femtosecond fiber Bragg grating(FBG).Firstly,structural design of the tilt sensor was conducted based on static mechanics principles.By positioning the FBG away from the beam’s neutral axis,linear strain enhancement in the FBG was achieved,thereby improving sensor sensitivity.The relationship between FBG strain,applied force,and the offset distance from the neutral axis was established,determining the optimal distance corresponding to maximum strain.Based on this optimization scheme,a prototype of the tilt sensor was designed,fabricated,and experimentally tested.Experimental results show that the FBG offset distance yielding maximum sensitivity is 4.4 mm.Within a tilt angle range of−30°to 30°,the sensor achieved a sensitivity of 129.95 pm/°and a linearity of 0.9997.Compared to conventional FBG-based tilt sensors,both sensitivity and linearity were significantly improved.Furthermore,the sensor demonstrated excellent repeatability(error<0.94%),creep resistance(error<0.30%),and temperature stability(error<0.90%).These results demonstrate the sensor’s excellent potential for SHM applications.The sensor has been successfully deployed in an underground pipeline project,conducting long-term monitoring of tilt and deformation in the steel support structures,further proving its value for engineering safety monitoring. 展开更多
关键词 fiber Bragg grating tilt sensor sensitivity-enhanced femtosecond FBG
在线阅读 下载PDF
Superhydrophilic Porous CoOOH Nano-Architecture with Abundant Oxygen Vacancies for Enhanced Urea Electrooxidation at Ampere-Level Current Densities
7
作者 Wen-Jing Lv Xiao-Man Tang +4 位作者 Xue-Tong Wang Wen-Cai Liu Jian-Wen Zhu Guo-Jing Wang Yuan-Zhi Zhu 《电化学(中英文)》 北大核心 2025年第8期44-56,共13页
The conversion of urea-containing wastewater into clean hydrogen energy has gained increasing attention.However,challenges remain,particularly with sluggish catalytic kinetics and limited long-term stability of urea o... The conversion of urea-containing wastewater into clean hydrogen energy has gained increasing attention.However,challenges remain,particularly with sluggish catalytic kinetics and limited long-term stability of urea oxidation reaction(UOR).Herein,we report the loosely porous CoOOH nano-architecture(CoOOH LPNAs)with hydrophilic surface and abundant oxygen vacancies(Ov)on carbon fiber paper(CFP)by electrochemical reconstruction of the CoP nanoneedles precursor.The resulting three-dimensional electrode exhibited an impressively low potential of 1.38 V at 1000 mA·cm^(−2) and excellent durability for UOR.Furthermore,when tested in an anion exchange membrane(AEM)electrolyzer,it required only 1.53 V at 1000 mA·cm^(−2) for industrial urea-assisted water splitting and operated stably for 100 h without degrada-tion.Experimental and theoretical investigations revealed that rich oxygen vacancies effectively modulate the electronic structure of the CoOOH while creating unique Co3-triangle sites with Co atoms close together.As a result,the adsorption and desorption processes of reactants and intermediates in UOR could be finely tuned,thereby significantly reducing ther-modynamic barriers.Additionally,the superhydrophilic self-supported nanoarray structure facilitated rapid gas bubble release,improving the overall efficiency of the reaction and preventing potential catalyst detachment caused by bubble accumulation,thereby improving both catalytic activity and stability at high current densities. 展开更多
关键词 COOOH Electrochemical reconstruction oxygen vacancy Superhydrophilic surface Urea electrooxidation
在线阅读 下载PDF
Ordering Degree Regulation of Pt_(2)NiCo Intermetallics for Efficient Oxygen Reduction Reaction
8
作者 Chen-Hao Zhang Han-Yu Hu +3 位作者 Jun-Hao Yang Qian Zhang Chang Yang De-Li Wang 《电化学(中英文)》 北大核心 2025年第4期12-23,共12页
Alloying transition metals with Pt is an effective strategy for optimizing Pt-based catalysts toward the oxygen reduction reaction(ORR).Atomic ordered intermetallic compounds(IMC)provide unique electronic and geometri... Alloying transition metals with Pt is an effective strategy for optimizing Pt-based catalysts toward the oxygen reduction reaction(ORR).Atomic ordered intermetallic compounds(IMC)provide unique electronic and geometrical effects as well as stronger intermetallic interactions due to the ordered arrangement of metal atoms,thus exhibiting superior electrocata-lytic activity and durability.However,quantitatively analyzing the ordering degree of IMC and exploring the correlation between the ordering degree and ORR activity remains extremely challenging.Herein,a series of ternary Pt_(2)NiCo interme-tallic catalysts(o-Pt_(2)NiCo)with different ordering degree were synthesized by annealing temperature modulation.Among them,the o-Pt_(2)NiCo which annealed at 800℃for two hours exhibits the highest ordering degree and the optimal ORR ac-tivity,which the mass activity of o-Pt_(2)NiCo is 1.8 times and 2.8 times higher than that of disordered Pt_(2)NiCo alloy and Pt/C.Furthermore,the o-Pt_(2)NiCo still maintains 70.8%mass activity after 30,000 potential cycles.Additionally,the ORR activity test results for Pt_(2)NiCo IMC with different ordering degree also provide a positive correlation between the ordering degree and ORR activity.This work provides a prospective design direction for ternary Pt-based electrocatalysts. 展开更多
关键词 Fuel cell oxygen reduction reaction ELECTROCATALYSIS Intermetallic compound Ordering degree
在线阅读 下载PDF
Metal-sensitive diaphragm fiber optic Fabry-Perot pressure sensor with temperature compensation
9
作者 WANG Hao-xing LIU Jia +6 位作者 WANG Hai-yang WANG Jun LI Yuan-hao YIN Jian-xiong WAN Shun DAI Yun-teng JIA Ping-gang 《中国光学(中英文)》 北大核心 2025年第5期1255-1265,共11页
A metal-sensitive diaphragm fiber optic pressure sensor with temperature compensation is developed for pressure monitoring in high-temperature environments,such as engine fuel systems,oil and gas wells,and aviation hy... A metal-sensitive diaphragm fiber optic pressure sensor with temperature compensation is developed for pressure monitoring in high-temperature environments,such as engine fuel systems,oil and gas wells,and aviation hydraulic systems.The sensor combines a metal-sensitive diaphragm and a sapphire wafer to form a temperature-pressure dual Fabry-Perot(FP)interference cavity.A cross-correlation signal demodulation algorithm and a temperature decoupling method are utilized to reduce the influence of temperature crosstalk on pressure measurement.Experimental results show that the maximum nonlinear error of the sensor pressure measurement is 0.75%full scale(FS)and 0.99%FS at room temperature and 300°C,respectively,in a pressure range of 0−10 MPa and 0−1.5 MPa.The sensor’s pressure measurement accuracy is 1.7%FS when using the temperature decoupling method.The sensor exhibits good static pressure characteristics,stability,and reliability,providing an effective solution for high-temperature pressure monitoring applications. 展开更多
关键词 high-temperature pressure sensor dual Fabry-Perot interference cavity temperature compensa-tion cross-correlation algorithm
在线阅读 下载PDF
Metal‑organic framework‑templated construction of FeOOH@CoMoO_(4)/nickel foam heterostructure for enhanced oxygen evolution reaction
10
作者 YANG Shaohua GAO Na'na GONG Yaqiong 《无机化学学报》 北大核心 2025年第10期2175-2185,共11页
Through employing zeolitic imidazolate framework-67(ZIF-67)templates,the straightforward hydrother-mal and electrodeposition methods were applied to synthesize FeOOH@CoMoO_(4)heterostructure attached to the sur-face o... Through employing zeolitic imidazolate framework-67(ZIF-67)templates,the straightforward hydrother-mal and electrodeposition methods were applied to synthesize FeOOH@CoMoO_(4)heterostructure attached to the sur-face of nickel foam(NF).The specific structure of the as-prepared FeOOH@CoMoO_(4)/NF-400s provided pronounced porosity and extensive surface area,enhancing rapid electron transport and exposing abundant active sites to improve catalytic reactions.Furthermore,the introduction of FeOOH,which induces electron transfer from FeOOH to CoMoO_(4),confirms their strong electronic interaction,thereby leading to an accelerated surface catalytic reaction.Consequently,the constructed FeOOH@CoMoO_(4)/NF-400s heterostructure demonstrated exceptional oxygen evolu-tion reaction(OER)activity,requiring an overpotential of 199 mV to deliver the current density of 10 mA·cm^(-2),cou-pled with the superior Tafel slope value of 49.56 mV·dec^(-1)and outstanding stability over 20 h under the current densities of both 10 and 100 mA·cm^(-2). 展开更多
关键词 template sacrifice approach zeolitic imidazolate framework-67 oxygen evolution reaction ELECTROCATALYSTS
在线阅读 下载PDF
A CNT Intercalated Co Porphyrin-Based Metal Organic Framework Catalyst for Oxygen Reduction Reaction
11
作者 Pei-Pei He Jin-Hua Shi +6 位作者 Xiao-Yu Li Ming-Jie Liu Zhou Fang Jing He Zhong-Jian Li Xin-Sheng Peng Qing-Gang He 《电化学(中英文)》 北大核心 2025年第1期31-40,共10页
The poor electronic conductivity of metal-organic framework(MOF)materials hinders their direct application in the field of electrocatalysis in fuel cells.Herein,we proposed a strategy of embedding carbon nanotubes(CNT... The poor electronic conductivity of metal-organic framework(MOF)materials hinders their direct application in the field of electrocatalysis in fuel cells.Herein,we proposed a strategy of embedding carbon nanotubes(CNTs)during the growth process of MOF crystals,synthesizing a metalloporphyrin-based MOF catalyst TCPPCo-MOF-CNT with a unique CNT-intercalated MOF structure.Physical characterization revealed that the CNTs enhance the overall conductivity while retaining the original characteristics of the MOF and metalloporphyrin.Simultaneously,the insertion of CNTs generated adequate mesopores and created a hierarchical porous structure that enhances mass transfer efficiency.X-ray photoelectron spectroscopic analysis confirmed that the C atom in CNT changed the electron cloud density on the catalytic active center Co,optimizing the electronic structure.Consequently,the E_(1/2) of the TCPPCo-MOF-CNT catalyst under neutral conditions reached 0.77 V(vs.RHE),outperforming the catalyst without CNTs.When the TCPPCo-MOF-CNT was employed as the cathode catalyst in assembling microbial fuel cells(MFCs)with Nafion-117 as the proton exchange membrane,the maxi-mum power density of MFCs reached approximately 500 mW·m^(-2). 展开更多
关键词 Metal organic framework CNT intercalated ELECTROCATALYSIS oxygen reduction reaction Microbial fuel cell
在线阅读 下载PDF
Development of a composite sandwich-structure piezoresistive pressure sensor for subtle-pressures application
12
作者 Mosayeb Shiri Nowrouz Mohammad Nouri Mohammad Riahi 《Defence Technology(防务技术)》 2025年第3期48-61,共14页
The Design and manufacturing of a noble piezoresistive pressure sensor(PS) for subtle pressures(<1 kPa) were presented. Meanwhile, in the studies conducted in the field of pressure sensors, the measurement of subtl... The Design and manufacturing of a noble piezoresistive pressure sensor(PS) for subtle pressures(<1 kPa) were presented. Meanwhile, in the studies conducted in the field of pressure sensors, the measurement of subtle pressures has received less attention. The limitations in the inherent gauge factor in silicon, have led to the development of polymer and composite resistive sensitive elements. However,in the development of resistance sensing elements, the structure of composite elements with reinforcement core has not been used. The proposed PS had a composite sandwich structure consisting of a nanocomposite graphene layer covered by layers of PDMS at the bottom and on the top coupled with a polyimide(PI) core. Various tests were performed to analyze the PS. The primary design target was improved sensitivity, with a finite-element method(FEM) utilized to simulate the stress profile over piezoresistive elements and membrane deflection at various pressures. The PS manufacturing process is based on Laser-engraved graphene(LEG) technology and PDMS casting. Experimental data indicated that the manufactured PS exhibits a sensitivity of 67.28 mV/kPa for a pressure range of 30-300 Pa in ambient temperature. 展开更多
关键词 Piezoresistive pressure sensor sensor manufacturing FEM Stretchable sensor LEG
在线阅读 下载PDF
Theoretical Insights into the Atomic and Electronic Structures of Polyperyleneimide:On the Origin of Photocatalytic Oxygen Evolution Activity
13
作者 Yi-Qing Wang Zhi Lin +1 位作者 Ming-Tao Li Shao-Hua Shen 《电化学(中英文)》 北大核心 2025年第5期28-36,共9页
Polymeric perylene diimide(PDI)has been evidenced as a good candidate for photocatalytic water oxidation,yet the origin of the photocatalytic oxygen evolution activity remains unclear and needs further exploration.Her... Polymeric perylene diimide(PDI)has been evidenced as a good candidate for photocatalytic water oxidation,yet the origin of the photocatalytic oxygen evolution activity remains unclear and needs further exploration.Herein,with crystal and atomic structures of the self-assembled PDI revealed from the X-ray diffraction pattern,the electronic structure is theoretically illustrated by the first-principles density functional theory calculations,suggesting the suitable band structure and the direct electronic transition for efficient photocatalytic oxygen evolution over PDI.It is confirmed that the carbonyl O atoms on the conjugation structure serve as the active sites for oxygen evolution reaction by the crystal orbital Hamiltonian group analysis.The calculations of reaction free energy changes indicate that the oxygen evolution reaction should follow the reaction pathway of H_(2)O→^(*)OH→^(*)O→^(*)OOH→^(*)O_(2)with an overpotential of 0.81 V.Through an in-depth theoretical computational analysis in the atomic and electronic structures,the origin of photocatalytic oxygen evolution activity for PDI is well illustrated,which would help the rational design and modification of polymeric photocatalysts for efficient oxygen evolution. 展开更多
关键词 Photocatalytic oxygen evolution Polymeric perylene diimide Atomic structure Electronic structure Reaction pathway
在线阅读 下载PDF
The reactivity of CO with different lattice oxygens on Cu doped CeO_(2)(111):A DFT study
14
作者 LI Yuan ZHENG Yisong +6 位作者 WANG Hao WANG Honghao ZHANG Caishun HU Shaozheng HAN Jiao ZHANG Lei GAO Zhixian 《燃料化学学报(中英文)》 北大核心 2025年第6期906-917,共12页
The adsorption of CO on different lattice oxygen sites in Cu doped CeO_(2)(111)was studied by DFT method,and the geometrical structure and electronic properties of adsorption systems were analyzed.The results showed t... The adsorption of CO on different lattice oxygen sites in Cu doped CeO_(2)(111)was studied by DFT method,and the geometrical structure and electronic properties of adsorption systems were analyzed.The results showed that CO interacted with lattice oxygen on the first layer formed CO_(2).However,when adsorbed on the second layer lattice oxygen,carbonate species were formed with the participation of first layer lattice oxygens,i.e.,CO co-adsorbed on first and second layer lattice oxygens.For the second layer adsorption,the absolute CO adsorption energy was big on the Oss nearby Cu.This kind of carbonates was thermodynamically stable,and it was attributed to the facilitation of Cu on CO adsorption,manifested by an electron migration behavior from the C 2p orbitals to the Cu 3d orbitals.However,the absolute CO adsorption energy on the Oss away from Cu was small.Compared to the formation of carbonates,the formation CO_(2)had very small absolute adsorption energy,suggesting the formed carbonates on second layer was stable.Further,when CO adsorbed on the systems with a carbonate,the absolute CO adsorption energy was significantly smaller than that of the non-carbonated system,indicating that the formation of carbonates inhibited CO oxidation on Cu/CeO_(2)(111).Therefore,the formation of carbonates was unfavorable for CO oxidation reaction on Cu/CeO_(2)(111).The results of this study provide theoretical support for the negative effect of CO_(2)on ceria-based catalysts. 展开更多
关键词 Cu/CeO_(2)(111) CO adsorption CARBONATE lattice oxygen
在线阅读 下载PDF
Electrochemical sensor based on a Co(Ⅱ)-based metal-organic framework for the detection of Cd^(2+)and Pb^(2+)
15
作者 GUO Wei GUO Zhuoyi +3 位作者 LI Xiaoxin ZHANG Wei YAN Juanzhi GUO Tingting 《无机化学学报》 北大核心 2025年第9期1889-1902,共14页
A cobalt-based metal-organic framework[Co_(3)(L)_(2)(1,4-bib)_(4)]·4H_(2)O(Co-MOF)was prepared using 5-[(4-carboxyphenoxy)methyl]isophthalic acid(H_(3)L)and 1,4-bis(1H-imidazol-1-yl)benzene(1,4-bib)as ligands.The... A cobalt-based metal-organic framework[Co_(3)(L)_(2)(1,4-bib)_(4)]·4H_(2)O(Co-MOF)was prepared using 5-[(4-carboxyphenoxy)methyl]isophthalic acid(H_(3)L)and 1,4-bis(1H-imidazol-1-yl)benzene(1,4-bib)as ligands.Then,an electrochemical sensor modified with Co-MOF on a glassy carbon electrode(Co-MOF@GCE)was constructed for detecting Cd^(2+)and Pb^(2+)in aqueous solutions.The sensor exhibited a linear range of 1.0-16.0µmol·L^(-1)with a detection limit(LOD)of 4.609 nmol·L^(-1)for Cd^(2+),and 0.5-10.0µmol·L^(-1)with an LOD of 1.307 nmol·L^(-1)for Pb^(2+).Simultaneous detection of both ions within 0.5-7.0µmol·L^(-1)achieved LOD values of 0.47 nmol·L^(-1)(Cd^(2+))and 0.008 nmol·L^(-1)(Pb^(2+)),respectively.Analysis of real water samples(tap water,mineral water,and river water)yielded recoveries of 95%-105%,validating practical applicability.Density functional theory(DFT)calculations reveal that synergistic interactions between cobalt centers and N/O atoms enhance adsorption and electron-transfer efficiency.CCDC:2160744. 展开更多
关键词 metal-organic frameworks electrochemical sensor heavy metal ions square wave anodic stripping voltammetry
在线阅读 下载PDF
Vibration sensor based on stretchable optical fiber and interferometric measurement
16
作者 WU Jia-jun XIE Kang +5 位作者 CAO Lei CAO Xuan LI Zhen-jia ZHAO Guo-shuai HE Jia-cheng TU Guo-jie 《中国光学(中英文)》 北大核心 2025年第5期1200-1208,共9页
Soft polymer optical fiber(SPOF)has shown great potential in optical-based wearable and implantable biosensors due to its excellent mechanical properties and optical guiding characteristics.However,the multimodality c... Soft polymer optical fiber(SPOF)has shown great potential in optical-based wearable and implantable biosensors due to its excellent mechanical properties and optical guiding characteristics.However,the multimodality characteristics of SPOF limit their integration with traditional fiber optic sensors.This article introduces for the first time a flexible fiber optic vibration sensor based on laser interference technology,which can be applied to vibration measurement under high stretch conditions.This sensor utilizes elastic optical fibers made of polydimethylsiloxane(PDMS)as sensing elements,combined with phase generating carrier technology,to achieve vibration measurement at 50−260 Hz within the stretch range of 0−42%. 展开更多
关键词 stretchable optical fiber sensing fiber optic vibration sensor phase generated carrier
在线阅读 下载PDF
Proton Irradiation-induced Oxygen Vacancy and Metallic Indium in Black Indium Oxide for Enhancing Photothermal CO_(2) Hydrogenation
17
作者 LIU Zequn WANG Cheng +3 位作者 ZENG Xiandi YAO Yingfang JIN Ziliang ZOU Zhigang 《材料科学与工程学报》 北大核心 2025年第5期697-705,714,共10页
On the surfaces of celestial bodies with no or thin atmospheres,such as the Moon and Mars,the solar wind irradiation process leads to the formation of hydrogen and helium enriched regions in the extraterrestrial soil ... On the surfaces of celestial bodies with no or thin atmospheres,such as the Moon and Mars,the solar wind irradiation process leads to the formation of hydrogen and helium enriched regions in the extraterrestrial soil particles.However,soil particles on the Earth with the similar composition lack such structures and properties.This discrepancy raises a key question whether there is a direct relationship between solar wind irradiation and the alterations in the structure and chemical performance of extraterrestrial materials.To address this question,this work investigates the effects of proton irradiation,simulating solar wind radiation,on the structure and photothermal catalytic properties of the classic catalyst In_(2)O_(3).It reveals that proton irradiation induces structural features in In_(2)O_(3) analogous to those characteristics of solar wind weathering observed in extraterrestrial materials.Furthermore,after proton beam irradiation with an energy of 30 keV and a dose of 3×10^(17) protons·cm^(-2),the methanol production yield of the In_(2)O_(3) catalyst increased to 2.6 times of its preirradiation level,and the methanol selectivity improved to 2.1 times of the original value.This work provides both theoretical and experimental support for the development of high-efficiency,radiation-resistant photothermal catalysts. 展开更多
关键词 Proton irradiation VESICULATION Photothermal CO_(2)hydrogenation oxygen vacancy Indium oxide
在线阅读 下载PDF
Effects of the oxygen transport properties of electrolytes on the reaction mechanisms in lithium-oxygen batteries
18
作者 Aijing Yan Zhuojun Zhang +1 位作者 Xu Xiao Peng Tan 《中国科学技术大学学报》 北大核心 2025年第2期35-42,34,I0001,I0002,共11页
Lithium-oxygen batteries attract considerable attention due to exceptionally high theoretical energy density,while the development remains in its early stage.As is widely suggested,the solution mechanism induces great... Lithium-oxygen batteries attract considerable attention due to exceptionally high theoretical energy density,while the development remains in its early stage.As is widely suggested,the solution mechanism induces greater discharge capacity,while the surface mechanism induces greater cycle stability.Therefore,battery performance can be improved by adjusting the reaction mechanism.Previous studies predominantly focus on extremely thin or flat electrodes.In contrast,this work utilizes thick electrodes,emphasizing the importance of mass transport.Given that the electrolyte solvent is the main site of mass transport,the effects of two typical solvents on mass transport and battery performance are investigated:dimethyl sulfoxide with low viscosity and a high O_(2) diffusion rate and tetraethylene glycol dimethyl ether with high O_(2) solubility and high Li+transport capability.The results reveal a novel pathway for reaction mechanism induction where the mechanism varies with the spatial position of the electrode.As the spatial distribution of the electrode progresses,a layered appearance of solution mechanism products,transition state products,and surface mechanism products emerges,which is attributed to the increase in the mass transfer resistance.This work presents a distinct perspective on the way solvents influence reaction pathways and offers a new approach to regulating reaction pathways. 展开更多
关键词 Li-O_(2)battery nonaqueous electrolyte oxygen transport property solution mechanism surface mechanism
在线阅读 下载PDF
An in-Pixel Histogramming TDC Based on Octonary Search and 4-Tap Phase Detection for SPAD-Based Flash LiDAR Sensor
19
作者 HE Wenjie NIE Kaiming WU Haoran 《传感技术学报》 北大核心 2025年第9期1547-1558,共12页
An in-pixel histogramming time-to-digital converter(hTDC)based on octonary search and 4-tap phase detection is presented,aiming to improve frame rate while ensuring high precicion.The proposed hTDC is a 12-bit two-ste... An in-pixel histogramming time-to-digital converter(hTDC)based on octonary search and 4-tap phase detection is presented,aiming to improve frame rate while ensuring high precicion.The proposed hTDC is a 12-bit two-step converter consisting of a 6-bit coarse quantization and a 6-bit fine quantization,which supports a time resolution of 120 ps and multiphoton counting up to 2 GHz without a GHz reference frequency.The proposed hTDC is designed in 0.11μm CMOS process with an area consumption of 6900μm^(2).The data from a behavioral-level model is imported into the designed hTDC circuit for simulation verification.The post-simulation results show that the proposed hTDC achieves 0.8%depth precision in 9 m range for short-range system design specifications and 0.2%depth precision in 48 m range for long-range system design specifications.Under 30×10^(3) lux background light conditions,the proposed hTDC can be used for SPAD-based flash LiDAR sensor to achieve a frame rate to 40 fps with 200 ps resolution in 9 m range. 展开更多
关键词 LiDAR sensor histogramming time-to-digital converter hybrid time of flight octonary search 4-tap phase detection
在线阅读 下载PDF
De novo-design of highly exposed Co−N−C single-atom catalyst for oxygen reduction reaction
20
作者 ZHOU Dan ZHU Hongyue +1 位作者 ZHAO Yang LIU Yiming 《燃料化学学报(中英文)》 北大核心 2025年第1期128-137,共10页
The nitrogen-coordinated metal single-atom catalysts(M−N−C SACs)with an ultra-high metal loading synthetized by direct high-temperature pyrolysis have been widely reported.However,most of metal single atoms in these c... The nitrogen-coordinated metal single-atom catalysts(M−N−C SACs)with an ultra-high metal loading synthetized by direct high-temperature pyrolysis have been widely reported.However,most of metal single atoms in these catalysts were buried in the carbon matrix,resulting in a low metal utilization and inaccessibility for adsorption of reactants during the catalytic process.Herein,we reported a facile synthesis based on the hard-soft acid-base(HSAB)theory to fabricate Co single-atom catalysts with highly exposed metal atoms ligated to the external pyridinic-N sites of a nitrogen-doped carbon support.Benefiting from the highly accessible Co active sites,the prepared Co−N−C SAC exhibited a superior oxygen reduction reactivity comparable to that of the commercial Pt/C catalyst,showing a high turnover frequency(TOF)of 0.93 e^(−)·s^(-1)·site^(-1)at 0.85 V vs.RHE,far exceeding those of some representative SACs with a ultra-high metal content.This work provides a rational strategy to design and prepare M−N−C single-atom catalysts featured with high site-accessibility and site-density. 展开更多
关键词 hard-soft acid-base Co−N−C single-atom catalyst highly accessible active sites oxygen reduction reaction
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部