期刊文献+
共找到1,890篇文章
< 1 2 95 >
每页显示 20 50 100
Fast encoding algorithm for vector quantization based on subvector L_2-norm 被引量:1
1
作者 Chen Shanxue Li Fangwei Zhu Weile 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2008年第3期611-617,共7页
A fast encoding algorithm based on the mean square error (MSE) distortion for vector quantization is introduced. The vector, which is effectively constructed with wavelet transform (WT) coefficients of images, can... A fast encoding algorithm based on the mean square error (MSE) distortion for vector quantization is introduced. The vector, which is effectively constructed with wavelet transform (WT) coefficients of images, can simplify the realization of the non-linear interpolated vector quantization (NLIVQ) technique and make the partial distance search (PDS) algorithm more efficient. Utilizing the relationship of vector L2-norm and its Euclidean distance, some conditions of eliminating unnecessary codewords are obtained. Further, using inequality constructed by the subvector L2-norm, more unnecessary codewords are eliminated. During the search process for code, mostly unlikely codewords can be rejected by the proposed algorithm combined with the non-linear interpolated vector quantization technique and the partial distance search technique. The experimental results show that the reduction of computation is outstanding in the encoding time and complexity against the full search method. 展开更多
关键词 image compression fast encoding subvector wavelet transform vector quantization.
在线阅读 下载PDF
A Novel Coding Method Based on Fuzzy Vector Quantization for Noised Image
2
作者 Li Yibing ,Lou Zhe, Jiang Tao & Si Xicai Dept. of Eledronic Eng., Harbin Engineering University 150001, P. R. China 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2001年第2期87-91,共5页
In this paper a novel coding method based on fuzzy vector quantization for noised image with Gaussian white-noise pollution is presented. By restraining the high frequency subbands of wavelet image the noise is signif... In this paper a novel coding method based on fuzzy vector quantization for noised image with Gaussian white-noise pollution is presented. By restraining the high frequency subbands of wavelet image the noise is significantly removed and coded with fuzzy vector quantization. The experimental result shows that the method can not only achieve high compression ratio but also remove noise dramatically. 展开更多
关键词 Fuzzy sets Gaussian noise (electronic) Image coding Image compression Integral equations vector quantization wavelet transforms White noise
在线阅读 下载PDF
Classification using wavelet packet decomposition and support vector machine for digital modulations 被引量:4
3
作者 Zhao Fucai Hu Yihua Hao Shiqi 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2008年第5期914-918,共5页
To make the modulation classification system more suitable for signals in a wide range of signal to noise rate (SNR), a feature extraction method based on signal wavelet packet transform modulus maxima matrix (WPT... To make the modulation classification system more suitable for signals in a wide range of signal to noise rate (SNR), a feature extraction method based on signal wavelet packet transform modulus maxima matrix (WPTMMM) and a novel support vector machine fuzzy network (SVMFN) classifier is presented. The WPTMMM feature extraction method has less computational complexity, more stability, and has the preferable advantage of robust with the time parallel moving and white noise. Further, the SVMFN uses a new definition of fuzzy density that incorporates accuracy and uncertainty of the classifiers to improve recognition reliability to classify nine digital modulation types (i.e. 2ASK, 2FSK, 2PSK, 4ASK, 4FSK, 4PSK, 16QAM, MSK, and OQPSK). Computer simulation shows that the proposed scheme has the advantages of high accuracy and reliability (success rates are over 98% when SNR is not lower than 0dB), and it adapts to engineering applications. 展开更多
关键词 modulation classification wavelet packet transform modulus maxima matrix support vector machine fuzzy density.
在线阅读 下载PDF
Application of wavelet support vector regression on SAR data de-noising 被引量:2
4
作者 Yi Lin Shaoming Zhang +1 位作者 Jianqing Cai Nico Sneeuw 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2011年第4期579-586,共8页
A new filtering method for SAR data de-noising using wavelet support vector regression (WSVR) is developed. On the basis of the grey scale distribution character of SAR imagery, the logarithmic SAR image as a noise ... A new filtering method for SAR data de-noising using wavelet support vector regression (WSVR) is developed. On the basis of the grey scale distribution character of SAR imagery, the logarithmic SAR image as a noise polluted signal is taken and the noise model assumption in logarithmic domain with Gaussian noise and impact noise is proposed. Based on the better per- formance of support vector regression (SVR) for complex signal approximation and the wavelet for signal detail expression, the wavelet kernel function is chosen as support vector kernel func- tion. Then the logarithmic SAR image is regressed with WSVR. Furthermore the regression distance is used as a judgment index of the noise type. According to the judgment of noise type every pixel can be adaptively de-noised with different filters. Through an approximation experiment for a one-dimensional complex signal, the feasibility of SAR data regression based on WSVR is con- firmed. Afterward the SAR image is treated as a two-dimensional continuous signal and filtered by an SVR with wavelet kernel function. The results show that the method proposed here reduces the radar speckle noise effectively while maintaining edge features and details well. 展开更多
关键词 synthetic aperture radar (SAR) support vector regres-sion (SVR) kernel function wavelet analysis function approximation.
在线阅读 下载PDF
Multi-Step Amplitude Quantization for Ultralow Sidelobe Phased Arrays by Direct Optimization Synthesis
5
作者 Zhu Huan Wang Yixin +1 位作者 Xu Xiaowen & Li Shizhi Dept. of Electronic Engineering, Beijing Institute of Technology, 100081, P. R. China 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2001年第1期65-69,共5页
In this paper, a new amplitude quantization synthesis method for ultralow sidelobe phased arrays is proposed, which is based on the constrained nonlinear optimization algorithm. By introducing a set of critical constr... In this paper, a new amplitude quantization synthesis method for ultralow sidelobe phased arrays is proposed, which is based on the constrained nonlinear optimization algorithm. By introducing a set of critical constraint conditions into the optimization model, we can directly quantize the amplitude distribution instead of replacing it with a continuous equivalent aperture antenna. The mutual coupling and the element patterns are also considered in the quantization synthesis. Finally, some array simulation results are given to show the effectiveness of the method. 展开更多
关键词 ALGORITHMS Computer simulation Directional patterns (antenna) Directive antennas Mathematical models OPTIMIZATION vector quantization
在线阅读 下载PDF
基于多尺度量化特征的视频异常行为检测算法
6
作者 马建红 王亚辉 +1 位作者 靳岩 卫权岗 《郑州大学学报(理学版)》 北大核心 2025年第5期39-45,共7页
视频异常行为检测在监控安防领域具有很高的应用价值。针对生成视频帧的自编码器模型在编码器与解码器间进行跳跃连接时会导致异常信息泛化的问题,提出一种基于多尺度量化特征的视频异常行为检测算法。首先,编码器学习正常帧并分层进行... 视频异常行为检测在监控安防领域具有很高的应用价值。针对生成视频帧的自编码器模型在编码器与解码器间进行跳跃连接时会导致异常信息泛化的问题,提出一种基于多尺度量化特征的视频异常行为检测算法。首先,编码器学习正常帧并分层进行矢量量化,解码器根据量化后的特征进行视频帧生成,避免了编码器和解码器之间直接进行信息传递,显著降低了泛化影响,提高帧生成质量。其次,对生成的帧使用金字塔变形模块进行多样性测量,通过计算生成帧和原始帧的变形来测量异常的严重程度。最后,融合生成帧的重建误差计算得到异常评分。在公共数据集上测试了算法的异常检测性能,实验结果显示,所提算法的AUC值均高于同类算法。 展开更多
关键词 视频异常检测 多尺度 矢量量化 变分自编码器
在线阅读 下载PDF
基于连续小波变换的CNN—SVM农机滚动轴承故障诊断
7
作者 沈伟杰 肖茂华 +1 位作者 宋新民 项腾飞 《中国农机化学报》 北大核心 2025年第4期254-264,共11页
针对农用机械滚动轴承故障诊断中轴承振动信号非线性、非平稳特性以及故障特征表征不明显的问题,提出一种基于连续小波变换(CWT)、卷积神经网络(CNN)和支持向量机(SVM)的滚动轴承故障诊断方法(CWT—CNN—SVM)。首先,利用CWT对滚动轴承... 针对农用机械滚动轴承故障诊断中轴承振动信号非线性、非平稳特性以及故障特征表征不明显的问题,提出一种基于连续小波变换(CWT)、卷积神经网络(CNN)和支持向量机(SVM)的滚动轴承故障诊断方法(CWT—CNN—SVM)。首先,利用CWT对滚动轴承振动信号进行多尺度时频分析,为后续故障诊断提供更详细的特征;然后,将提取到的时频图作为输入,利用CNN深层次学习故障特征信息;最后,采用SVM对输出结果进行分类,以实现精确的故障类型识别。与BPNN、SVM、CWT—CNN以及CWT—ResNet等方法比较,试验结果表明,CWT—CNN—SVM故障诊断准确率最高,单次准确率达到100%,5次重复试验准确率为99.62%。CWT—CNN—SVM在处理复杂的滚动轴承故障诊断问题时,不仅诊断准确,同时展现出深度学习与故障诊断相结合的优势,能进一步提升小数据集的性能。所提出的CWT—CNN—SVM方法对于提升农机滚动轴承故障诊断性能,具有一定的理论价值和实际应用前景。 展开更多
关键词 故障诊断 农机 滚动轴承 连续小波变换 卷积神经网络 支持向量机
在线阅读 下载PDF
基于DWD-SVR模型的锂离子电池剩余使用寿命预测
8
作者 王小明 何叶 +3 位作者 王路路 吴红斌 徐斌 赵文广 《太阳能学报》 北大核心 2025年第2期52-59,共8页
针对锂离子电池容量退化特性的非线性和多尺度特性,提出一种基于离散小波分解(DWD)和支持向量回归(SVR)模型的锂离子电池RUL预测方法。首先,利用DWD对容量时间序列进行多尺度解耦,以降低局部再生和波动现象对预测结果的影响;其次,利用K... 针对锂离子电池容量退化特性的非线性和多尺度特性,提出一种基于离散小波分解(DWD)和支持向量回归(SVR)模型的锂离子电池RUL预测方法。首先,利用DWD对容量时间序列进行多尺度解耦,以降低局部再生和波动现象对预测结果的影响;其次,利用K-均值聚类方法将各尺度信号中样本熵与排列熵相近的子序列进行聚类,根据聚类结果将复杂度与随机性相近的子序列进行重构,以减少建模次数,提高预测效率;最后,通过SVR预测模型精确捕捉不同尺度下容量信号的变化情况,实现电池RUL准确预测。实验结果表明,提出的基于DWD-SVR模型的锂离子电池RUL预测方法能在保证全局退化趋势预测准确性的同时对波动进行及时地响应,可提高预测性能。 展开更多
关键词 锂离子电池 支持向量回归 K-均值聚类 剩余使用寿命 离散小波分解
在线阅读 下载PDF
基于改进北方苍鹰算法优化SVM的轴承故障诊断研究
9
作者 吴晓君 李渠伟 《机械强度》 北大核心 2025年第5期80-89,共10页
针对群智能算法优化支持向量机(Support Vector Machine,SVM)模型时容易遭遇局部最优的问题,提出一种改进北方苍鹰优化(Improved Northern Goshawk Optimization,INGO)算法,并将其应用于滚动轴承的故障诊断。通过引入基于余弦变化的自... 针对群智能算法优化支持向量机(Support Vector Machine,SVM)模型时容易遭遇局部最优的问题,提出一种改进北方苍鹰优化(Improved Northern Goshawk Optimization,INGO)算法,并将其应用于滚动轴承的故障诊断。通过引入基于余弦变化的自适应惯性权重因子以及柯西变异策略来改进北方苍鹰优化(Northern Goshawk Optimization,NGO)算法,并结合SVM构建INGO-SVM故障诊断模型。为评估改进算法的性能,首先,使用基准测试函数进行了试验,并将改进算法与现有的NGO、粒子群优化(Particle Swarm Optimization,PSO)算法、麻雀搜索算法(Sparrow Search Algorithm,SSA)等进行比较,改进算法的性能在一定程度上有所提升。然后,通过小波包分解对原始诊断信号进行特征提取并划分出10种类别,使用第3层各频段的能量作为特征向量,输入到故障诊断模型;最后,比较了改进算法与其他3种算法在优化SVM参数进行故障分类时的性能。结果表明,改进算法能够有效准确地实现不同故障的分类,准确率可达99.39%,验证了该方法的有效性和可行性。 展开更多
关键词 故障诊断 改进北方苍鹰优化算法 柯西变异策略 小波包分解 支持向量机
在线阅读 下载PDF
基于生成模型的三维波束形成图像压缩方法
10
作者 赵昀杰 贺岩松 +1 位作者 张志飞 徐中明 《中国机械工程》 北大核心 2025年第7期1520-1529,共10页
针对通道压缩方法在高压缩率下导致DenseNet模型定位性能显著降低的问题,提出一种基于改进向量量化变分自编码器(VQ-VAE-2)模型的三维波束形成图像压缩(3D-BFMC)方法。先利用VQ-VAE-2模型的层级编码器将三维波束形成图压缩为向量化局部... 针对通道压缩方法在高压缩率下导致DenseNet模型定位性能显著降低的问题,提出一种基于改进向量量化变分自编码器(VQ-VAE-2)模型的三维波束形成图像压缩(3D-BFMC)方法。先利用VQ-VAE-2模型的层级编码器将三维波束形成图压缩为向量化局部特征矩阵,再将该矩阵输入DenseNet模型实现三维定位。仿真结果表明,使用3D-BFMC方法压缩数据训练的DenseNet模型在定位精度、频率泛化性能、噪声鲁棒性上均优于通道压缩方法。单声源试验验证了3D-BFMC方法在真实环境中的有效性和可行性。 展开更多
关键词 波束形成 数据压缩 深度学习 改进向量量化变分自编码器 三维空间
在线阅读 下载PDF
基于SVC和wavelet-transform的图像脉冲噪声自适应新滤波器 被引量:2
11
作者 陆丽婷 朱嘉钢 《计算机应用》 CSCD 北大核心 2009年第2期477-479,共3页
利用小波变换可以检测信号奇异点的原理,提出了一种基于WT的脉冲噪声检测方法,并把这一方法与支持向量分类器SVC脉冲噪声检测方法相结合,提出了一种改进的SVC图像脉冲噪声滤波器。实验表明,这一改进的SVC脉冲噪声滤波器的滤波效果比原先... 利用小波变换可以检测信号奇异点的原理,提出了一种基于WT的脉冲噪声检测方法,并把这一方法与支持向量分类器SVC脉冲噪声检测方法相结合,提出了一种改进的SVC图像脉冲噪声滤波器。实验表明,这一改进的SVC脉冲噪声滤波器的滤波效果比原先的SVC滤波器有明显的改善。 展开更多
关键词 图像恢复 脉冲噪声 小波变换 支持向量分类
在线阅读 下载PDF
小波包变换与支持向量机的电力变压器故障诊断方法 被引量:1
12
作者 黄道友 任丽佳 康健 《电源学报》 北大核心 2025年第1期251-258,共8页
针对传统电力变压器故障诊断方法无法实现电力故障准确检测并保证电力变压器正常运行的问题,提出1种小波包变换与支持向量机相结合的电力变压器故障诊断方法。对采集的电力变压器电力信号,利用改进最小噪声分离MNF(minimum noise fracti... 针对传统电力变压器故障诊断方法无法实现电力故障准确检测并保证电力变压器正常运行的问题,提出1种小波包变换与支持向量机相结合的电力变压器故障诊断方法。对采集的电力变压器电力信号,利用改进最小噪声分离MNF(minimum noise fraction)变换实施去噪,并通过加权邻域均值法对噪声矩阵进行估计,利用改进的MNF变换有效实现图像降维、去噪处理,提取信号特征;利用小波包变换方法将信号分为低频部分与高频部分,以获取小波包能量特征向量,将所获取小波包能量特征向量输入支持向量机分类器中,利用支持向量机分类器输出结果,实现电力变压器状态识别和故障诊断。实验结果表明,所提方法可有效诊断电力变压器中的铁芯短路、线圈层间短路、套管对地击穿、线圈绝缘电阻下降和套管间放电等故障,故障诊断精度高于98.5%。 展开更多
关键词 小波包变换 电力变压器 故障诊断 支持向量机
在线阅读 下载PDF
三相电动机和变频器负载条件下串联故障电弧频域特征研究
13
作者 高悦哲 王智勇 +2 位作者 郭凤仪 高洪鑫 吕玉泽 《电气工程学报》 北大核心 2025年第2期149-156,共8页
串联故障电弧是引发电气火灾的主要原因之一。提出一种基于小波包分解(Wavelet packet decomposition,WPD)能量占比变化率的特征频段筛选方法和基于有限长单位冲激响应(Finite impulse response,FIR)滤波器的故障特征提取方法。针对工... 串联故障电弧是引发电气火灾的主要原因之一。提出一种基于小波包分解(Wavelet packet decomposition,WPD)能量占比变化率的特征频段筛选方法和基于有限长单位冲激响应(Finite impulse response,FIR)滤波器的故障特征提取方法。针对工业领域广泛使用的三相电动机和变频器负载开展了三相回路中的串联故障电弧试验;采用WPD对电流信号进行了9层分解,利用各个频段信号在故障发生前后的能量占比变化率确定串联故障电弧的特征频段;利用FIR滤波器提取故障电流的特征频段信号,以特征频段信号绝对值平均值、峭度作为串联故障电弧特征;结合经粒子群和网格搜寻优化的支持向量机(Support vectormachine,SVM)对串联故障电弧进行识别。结果表明,三相电动机和变频器回路中串联故障电弧共同的特征频段为1.56~1.76 kHz、2.93~6.25 kHz、9.38~10.94 kHz,所提出的串联故障电弧检测方法可以准确地检测出该回路发生串联故障电弧。 展开更多
关键词 串联故障电弧 频域特征 小波包分解 有限长单位冲激响应滤波器 支持向量机
在线阅读 下载PDF
图像压缩技术研究综述
14
作者 周开军 廖婷 +1 位作者 谭平 史长发 《计算机科学与探索》 北大核心 2025年第7期1699-1728,共30页
图像压缩是图像处理与通信领域的一项关键技术,一直以来是学术界的研究热点。对图像压缩的基本概念和原理进行了系统梳理,区分了无损压缩与有损压缩,介绍了各类编码技术。在传统压缩方法方面,对基于离散余弦变换、离散小波变换、矢量量... 图像压缩是图像处理与通信领域的一项关键技术,一直以来是学术界的研究热点。对图像压缩的基本概念和原理进行了系统梳理,区分了无损压缩与有损压缩,介绍了各类编码技术。在传统压缩方法方面,对基于离散余弦变换、离散小波变换、矢量量化和分形压缩的技术进行了全面分析,探讨了它们的优缺点及适用范围。这些方法虽在图像压缩领域发挥了重要作用,但随着技术发展,其局限性也逐渐显现。针对深度学习领域的图像压缩技术,重点研究了卷积神经网络、循环神经网络、生成对抗网络以及近年来兴起的Transformer和扩散模型等方法在图像压缩中的应用。这些方法通过自动学习图像特征,实现了更高效的压缩和图像重构。在性能评估方面,分析了压缩比、峰值信噪比和结构相似性指数等关键指标,并探讨了图像压缩技术在不同领域的应用前景和面临的挑战。对未来图像压缩技术的发展方向和研究趋势进行了展望,指出随着深度学习与新兴技术的结合,智能图像压缩将成为未来的重要发展方向。 展开更多
关键词 图像压缩 矢量量化 分形压缩 深度学习
在线阅读 下载PDF
内外特征交互与融合的双流注意力图像修复方法
15
作者 黄光远 黄荣 +1 位作者 周树波 蒋学芹 《电子学报》 北大核心 2025年第4期1293-1307,共15页
注意力机制及其变体已广泛应用于基于深度学习的图像修复领域,它们将破损图像内部分为完好区域和缺失区域,捕获完好区域的远距离上下文信息以填充缺失区域.随着缺失区域增大,完好区域特征减少,限制了注意力机制的性能,从而导致修复效果... 注意力机制及其变体已广泛应用于基于深度学习的图像修复领域,它们将破损图像内部分为完好区域和缺失区域,捕获完好区域的远距离上下文信息以填充缺失区域.随着缺失区域增大,完好区域特征减少,限制了注意力机制的性能,从而导致修复效果不佳.为拓展注意力机制捕获上下文的范围,本文通过矢量量化码本学习视觉原子.这些视觉原子刻画了图像块的结构、纹理等特征,组成用于图像修复的外部特征,以弥补图像内部完好区域特征的不足.在此基础上,本文提出一种内外特征交互与融合的双流注意力图像修复方法.该方法结合内部和外部两个信息源,设计了内部掩码注意力和内外交叉注意力,组成双流注意力以实现内部特征之间以及内部和外部特征之间的交互,生成内外源修复特征.内部掩码注意力通过掩码屏蔽缺失区域特征的干扰,仅在完好区域捕获上下文信息,生成内源修复特征.内外交叉注意力通过计算内部特征与由视觉原子组成的外部特征之间的相似度关系,实现内外特征之间的交互,生成外源修复特征.此外,本文设计了可控特征融合模块,利用内外源修复特征之间的相关性生成空间权重图,为每个空间位置精确地筛选内外源修复特征,从而实现内部与外部特征的融合.在Places2、FFHQ和Paris StreetView三个公开的数据集上的实验结果表明本文方法在PSNR、SSIM、L1、LPIPS和FID指标上比其他先进方法平均提高了3.45%、1.34%、13.91%、13.64%和16.92%.消融实验结果和可视化实验结果表明图像内部特征与由视觉原子组成的外部特征均有益于修复破损图像. 展开更多
关键词 图像修复 矢量量化码本 视觉原子 掩码注意力 交叉注意力 特征融合
在线阅读 下载PDF
改进矢量量化变分自编码器的工业时序异常检测
16
作者 李若凡 何启学 《计算机应用》 北大核心 2025年第S1期127-131,共5页
工业领域的异常检测对提高工业自动化和工业生产效率具有重要意义。针对现有的异常检测模型不能有效捕捉传感器数据间复杂的特征关系和异常检测精度有待提升的问题,提出一种改进的矢量量化变分自编码器(VQ-VAE)。首先,考虑工业时序异常... 工业领域的异常检测对提高工业自动化和工业生产效率具有重要意义。针对现有的异常检测模型不能有效捕捉传感器数据间复杂的特征关系和异常检测精度有待提升的问题,提出一种改进的矢量量化变分自编码器(VQ-VAE)。首先,考虑工业时序异常数据具有隐藏性,使用短时傅里叶变换(STFT)处理序列,使序列在时域和频域中建立联系;其次,由于变分自编码器(VAE)本身建模受限于高斯分布假设,导致学习工业场景下复杂多变的数据分布有困难,引入矢量量化层,用确定性的量化替代连续随机的潜在矢量,从而学习数据的正常表示;最后,采用残差的思想级联多个量化器迭代捕捉序列的正常模式,以提高检测精确度。在SWaT(Secure Water Treatment)、WADI(WAter DIstribution)、SMAP(Soil Moisture Active Passive satellite)、SMD(Server Machine Dataset)这4个公开数据集上与LSTM-VAE(Long Short-Term Memory Variational AutoEncoder)、图偏差网络(GDN)等模型比较,所提模型的F1分数比对比模型中的最优结果分别提升了2.03、3.67、3.10和0.91个百分点。 展开更多
关键词 异常检测 时间序列 变分自编码器 短时傅里叶变换 矢量量化
在线阅读 下载PDF
基于Wavelet降噪和支持向量机的锂离子电池容量预测研究 被引量:26
17
作者 张婷婷 于明 +1 位作者 李宾 刘哲 《电工技术学报》 EI CSCD 北大核心 2020年第14期3126-3136,共11页
随着电池使用次数的增加,电池会出现老化问题。通过对电池的剩余容量进行预测,可以为设备系统中电池管理系统提供可靠的数据支撑。该文采用支持向量机(SVM)对锂离子电池剩余容量进行预测,并采用改进鸡群算法(ICSO)对SVM参数进行优化,从... 随着电池使用次数的增加,电池会出现老化问题。通过对电池的剩余容量进行预测,可以为设备系统中电池管理系统提供可靠的数据支撑。该文采用支持向量机(SVM)对锂离子电池剩余容量进行预测,并采用改进鸡群算法(ICSO)对SVM参数进行优化,从而建立了ICSO-SVM预测模型。为验证预测模型的可行性,首先,采用db5小波对B5和B6电池容量衰减数据进行多尺度分解,进而重构去噪后的信号;其次,对鸡群优化算法(CSO)进行了改进,提出了ICSO优化算法,经测试ICSO算法的收敛精度明显高于粒子群优化算法(PSO)和传统CSO算法;最后,采用两组实验对CSO-SVM模型和ICSO-SVM模型进行验证。通过分析发现,ICSO-SVM模型的平均偏差(AAD)值在1.5%以下,RMSE值在2%以下,R2均值为0.972 6。 展开更多
关键词 锂离子电池 支持向量机 优化算法 小波去噪 容量预测
在线阅读 下载PDF
基于小波特征和邻域信息的无人机高光谱影像农作物精细分类方法
18
作者 赵阳 赵展 +3 位作者 刘耀辉 田子昊 李福昊 张宝文 《农业工程》 2025年第5期23-32,共10页
农业是保障国家经济稳定和社会发展的基础产业,利用无人机高光谱影像进行精确的作物分类与制图,对农业生产管理和政策制定至关重要。依据无人机高光谱影像同时具有高光谱分辨率和高空间分辨率的特点,提出一种基于小波特征和邻域信息的... 农业是保障国家经济稳定和社会发展的基础产业,利用无人机高光谱影像进行精确的作物分类与制图,对农业生产管理和政策制定至关重要。依据无人机高光谱影像同时具有高光谱分辨率和高空间分辨率的特点,提出一种基于小波特征和邻域信息的无人机高光谱影像农作物精细分类方法。该方法首先通过多级小波分解提取高光谱信号的趋势与细节特征,利用训练样本自我验证筛选出最优特征组合并优化分类器参数;随后引入邻域分析扩展地物的特征信息,增强作物空间差异较明显区域的样本代表性并获得最优小波特征集进行最终分类。试验结果表明,相比于常规原始光谱特征分类,采用小波变换特征分类精度由73.90%提升至83.68%,增幅达9.78个百分点,结合邻域信息分类精度进一步提升至86.29%。该方法有效提升农作物分类精度,并有效减少农作物分类过程中由于光谱特征相似和受作物长势不同、土壤裸露等空间差异因素所带来的干扰,验证了小波变换与邻域分析相结合在高光谱影像分类中的有效性。 展开更多
关键词 精细分类 小波特征变换 邻域分析 支持向量机 高光谱影像
在线阅读 下载PDF
特征降维下基于LSSA-SVM的转子系统故障诊断模型
19
作者 史宗帅 亚森江·加入拉 +1 位作者 崔鹏飞 靳鹏飞 《机电工程》 北大核心 2025年第3期463-471,500,共10页
针对有噪声环境下轴承转子系统的故障特征难以有效提取,且转子系统故障诊断的准确率较低的问题,提出了一种基于Levy飞行策略改进的麻雀搜索算法(LSSA)优化支持向量机(SVM),结合主成分分析(PCA)特征降维的转子故障诊断方法(模型)。首先,... 针对有噪声环境下轴承转子系统的故障特征难以有效提取,且转子系统故障诊断的准确率较低的问题,提出了一种基于Levy飞行策略改进的麻雀搜索算法(LSSA)优化支持向量机(SVM),结合主成分分析(PCA)特征降维的转子故障诊断方法(模型)。首先,采用小波分析技术对原始的转子振动信号进行了去噪处理,通过提取信号的时域特征以精确表征不同的转子故障状态,确保了该特征在噪声干扰下仍能清晰反映故障模式;然后,采用PCA对所提取的高维特征进行了降维处理,有效减少了冗余信息和噪声干扰,保留了最具代表性的关键特征,从而提高了特征提取的效率与诊断的可靠性;最后,设计了Levy飞行策略,对SSA进行了改进,得到了改进后的麻雀搜索算法(LSSA),以优化SVM的参数选择,进一步提升了分类器的泛化能力,利用改进的算法增强了该模型在复杂、有噪声环境下的诊断性能。研究结果表明:通过在多个含噪声的转子故障数据集上进行实验,该方法的故障诊断准确率达到了98.5%,相较于传统诊断方法,其具有更强的鲁棒性和较高的诊断精度,特别是在有噪环境中的优势更为明显。该方法有效解决了噪声干扰对故障诊断精度的影响问题,显著提高了转子故障诊断的准确性和稳定性,为实际工程中的转子故障诊断提供了一种有效的解决方案。 展开更多
关键词 轴承故障诊断 莱维飞行 改进的麻雀搜索算法 支持向量机 主成分分析 主成分分析特征降维 小波阈值函数去噪
在线阅读 下载PDF
Soft sensor design for hydrodesulfurization process using support vector regression based on WT and PCA 被引量:2
20
作者 Saeid Shokri Mohammad Taghi Sadeghi +1 位作者 Mahdi Ahmadi Marvast Shankar Narasimhan 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第2期511-521,共11页
A novel method for developing a reliable data driven soft sensor to improve the prediction accuracy of sulfur content in hydrodesulfurization(HDS) process was proposed. Therefore, an integrated approach using support ... A novel method for developing a reliable data driven soft sensor to improve the prediction accuracy of sulfur content in hydrodesulfurization(HDS) process was proposed. Therefore, an integrated approach using support vector regression(SVR) based on wavelet transform(WT) and principal component analysis(PCA) was used. Experimental data from the HDS setup were employed to validate the proposed model. The results reveal that the integrated WT-PCA with SVR model was able to increase the prediction accuracy of SVR model. Implementation of the proposed model delivers the best satisfactory predicting performance(EAARE=0.058 and R2=0.97) in comparison with SVR. The obtained results indicate that the proposed model is more reliable and more precise than the multiple linear regression(MLR), SVR and PCA-SVR. 展开更多
关键词 soft sensor support vector regression principal component analysis wavelet transform hydrodesulfurization process
在线阅读 下载PDF
上一页 1 2 95 下一页 到第
使用帮助 返回顶部