针对现有的工业控制系统异常检测分类方法大多无法有效处理类不平衡和重叠耦合的问题,提出了一种基于干扰样本分布优化的工控异常检测改进SVM模型(Improved SVM Model Based on Adaptive Differential Evolution with Sphere, SJADE_SV...针对现有的工业控制系统异常检测分类方法大多无法有效处理类不平衡和重叠耦合的问题,提出了一种基于干扰样本分布优化的工控异常检测改进SVM模型(Improved SVM Model Based on Adaptive Differential Evolution with Sphere, SJADE_SVM),该模型将基于超球体覆盖的自适应差分进化过采样技术与支持向量机相结合。首先,通过改进超球体覆盖算法和构建概率公式,来识别和排除干扰样本;然后,改进合成少数派过采样技术,通过对安全样本采样,缓解类不平衡和重叠耦合问题;最后,使用自适应差分进化算法优化样本的位置和属性,同时使用SVM进行分类。在6个真实工控数据集和4个UCI公开数据集上共设计3组实验,包括与逻辑回归和高斯朴素贝叶斯等异常检测分类算法的性能对比、改善样本分布方法的实验对比以及算法的运行时间对比。实验结果表明,该模型在F-score和G-mean评价指标上分别提高了38.29%和10.54%,分类效果稳居前三,且在α=0.05的非参数双侧Wilcoxon符号秩检验和Friedman检验等统计实验中表现出显著的性能优势。展开更多
The support vector machine (SVM) is a novel machine learning method, which has the ability to approximate nonlinear functions with arbitrary accuracy. Setting parameters well is very crucial for SVM learning results...The support vector machine (SVM) is a novel machine learning method, which has the ability to approximate nonlinear functions with arbitrary accuracy. Setting parameters well is very crucial for SVM learning results and generalization ability, and now there is no systematic, general method for parameter selection. In this article, the SVM parameter selection for function approximation is regarded as a compound optimization problem and a mutative scale chaos optimization algorithm is employed to search for optimal paraxneter values. The chaos optimization algorithm is an effective way for global optimal and the mutative scale chaos algorithm could improve the search efficiency and accuracy. Several simulation examples show the sensitivity of the SVM parameters and demonstrate the superiority of this proposed method for nonlinear function approximation.展开更多
To solve the multi-class fault diagnosis tasks, decision tree support vector machine (DTSVM), which combines SVM and decision tree using the concept of dichotomy, is proposed. Since the classification performance of...To solve the multi-class fault diagnosis tasks, decision tree support vector machine (DTSVM), which combines SVM and decision tree using the concept of dichotomy, is proposed. Since the classification performance of DTSVM highly depends on its structure, to cluster the multi-classes with maximum distance between the clustering centers of the two sub-classes, genetic algorithm is introduced into the formation of decision tree, so that the most separable classes would be separated at each node of decisions tree. Numerical simulations conducted on three datasets compared with "one-against-all" and "one-against-one" demonstrate the proposed method has better performance and higher generalization ability than the two conventional methods.展开更多
文摘针对现有的工业控制系统异常检测分类方法大多无法有效处理类不平衡和重叠耦合的问题,提出了一种基于干扰样本分布优化的工控异常检测改进SVM模型(Improved SVM Model Based on Adaptive Differential Evolution with Sphere, SJADE_SVM),该模型将基于超球体覆盖的自适应差分进化过采样技术与支持向量机相结合。首先,通过改进超球体覆盖算法和构建概率公式,来识别和排除干扰样本;然后,改进合成少数派过采样技术,通过对安全样本采样,缓解类不平衡和重叠耦合问题;最后,使用自适应差分进化算法优化样本的位置和属性,同时使用SVM进行分类。在6个真实工控数据集和4个UCI公开数据集上共设计3组实验,包括与逻辑回归和高斯朴素贝叶斯等异常检测分类算法的性能对比、改善样本分布方法的实验对比以及算法的运行时间对比。实验结果表明,该模型在F-score和G-mean评价指标上分别提高了38.29%和10.54%,分类效果稳居前三,且在α=0.05的非参数双侧Wilcoxon符号秩检验和Friedman检验等统计实验中表现出显著的性能优势。
基金the National Nature Science Foundation of China (60775047, 60402024)
文摘The support vector machine (SVM) is a novel machine learning method, which has the ability to approximate nonlinear functions with arbitrary accuracy. Setting parameters well is very crucial for SVM learning results and generalization ability, and now there is no systematic, general method for parameter selection. In this article, the SVM parameter selection for function approximation is regarded as a compound optimization problem and a mutative scale chaos optimization algorithm is employed to search for optimal paraxneter values. The chaos optimization algorithm is an effective way for global optimal and the mutative scale chaos algorithm could improve the search efficiency and accuracy. Several simulation examples show the sensitivity of the SVM parameters and demonstrate the superiority of this proposed method for nonlinear function approximation.
基金supported by the National Natural Science Foundation of China (60604021 60874054)
文摘To solve the multi-class fault diagnosis tasks, decision tree support vector machine (DTSVM), which combines SVM and decision tree using the concept of dichotomy, is proposed. Since the classification performance of DTSVM highly depends on its structure, to cluster the multi-classes with maximum distance between the clustering centers of the two sub-classes, genetic algorithm is introduced into the formation of decision tree, so that the most separable classes would be separated at each node of decisions tree. Numerical simulations conducted on three datasets compared with "one-against-all" and "one-against-one" demonstrate the proposed method has better performance and higher generalization ability than the two conventional methods.