【意义】大环烷烃是一类具有单环结构而环碳数较大(n>10)的饱和脂肪烃类化合物,在油页岩、原油、土壤及高等植物中均有检出,其具有确切的生物母源信息,可以清晰地指示样品的原始沉积环境。大环烷烃碳数范围不固定,与长链烷基烯烃、...【意义】大环烷烃是一类具有单环结构而环碳数较大(n>10)的饱和脂肪烃类化合物,在油页岩、原油、土壤及高等植物中均有检出,其具有确切的生物母源信息,可以清晰地指示样品的原始沉积环境。大环烷烃碳数范围不固定,与长链烷基烯烃、烷基环己烷等化合物相比,不仅在色谱上具有相同的等间距流出特征,而且它们的质谱分子离子(C_(n)H_(2n))和特征碎片离子(m/z 97、111、125)也一模一样,极易造成误判,亟须对其结构特征进行精准厘定。【进展】系统梳理了相关的文献,并以澳大利亚悉尼盆地藻烛煤(torbanite)为对象,分离纯化单体化合物后完成核磁(Nuclear Magnetic Resonance,NMR)结构解析;类比环己烷断裂模式,提出三条质谱裂解途径,完整阐释了其特征碎片的生成机制;进一步归纳了大环烷烃可能的生物合成路线。【结论与展望】NMR结构鉴定表示大环烷烃具有特殊的单体饱和环烷烃结构。Torbanite中丛粒藻来源的大环烷烃类化合物最初的生物前体可能是长链的油酸,经长链不饱和聚醛中间体最终环化而成。未来可以逐步完善高等植物来源的大环烷烃的生物合成途径,并对其相关比值参数进行归纳总结以应用于实际地质样品中。展开更多
蛋白质-蛋白质相互作用在细胞的生化功能中扮演极为重要的角色,深入解析蛋白质相互作用关系是理解细胞生命活动的关键。本研究以高尔基体蛋白73(golgi protein 73,GP73)为研究对象,利用经典的免疫共沉淀联合质谱技术系统挖掘了GP73的相...蛋白质-蛋白质相互作用在细胞的生化功能中扮演极为重要的角色,深入解析蛋白质相互作用关系是理解细胞生命活动的关键。本研究以高尔基体蛋白73(golgi protein 73,GP73)为研究对象,利用经典的免疫共沉淀联合质谱技术系统挖掘了GP73的相互作用蛋白质,力求进一步解析GP73的分子功能。选取肝癌细胞系HepG2,利用慢病毒感染技术构建过表达GP73-3Flag的稳定细胞系,免疫共沉淀联合质谱检测鉴定出78个高置信的GP73相互作用蛋白质,生物信息学分析提示,GP73与近40个细胞核蛋白质存在相互作用,并参与RNA运输、剪接和翻译等生物学过程,进一步的免疫荧光和细胞核蛋白质分离实验证实,GP73在多种肿瘤细胞中的细胞核定位,在78个相互作用蛋白质的基础上进一步筛选出与mRNA剪接相关的蛋白质相互作用网络,并通过免疫共沉淀验证了GP73与HNRNPH3、SMN1、RBM14、NCBP1等7种蛋白质存在相互作用。Minigene剪接实验提示,过表达GP73抑制细胞对pre-mRNA的剪接效率。本研究拓展了对GP73蛋白功能的认识和理解,有助于解释其在细胞生物学中的重要角色及其与疾病的潜在关联。展开更多
The gut microbiota is a complex ecosystem composed of many bacteria and their metabolites.It plays an irreplaceable role in human digestion,nutrient absorption,energy supply,fat metabolism,immune regulation,and many o...The gut microbiota is a complex ecosystem composed of many bacteria and their metabolites.It plays an irreplaceable role in human digestion,nutrient absorption,energy supply,fat metabolism,immune regulation,and many other aspects.Exploring the structure and function of the gut microbiota,as well as their key genes and metabolites,will enable the early diagnosis and auxiliary diagnosis of diseases,new treatment methods,better effects of drug treatments,and better guidance in the use of antibiotics.The identification of gut microbiota plays an important role in clinical diagnosis and treatment,as well as in drug research and development.Therefore,it is necessary to conduct a comprehensive review of this rapidly evolving topic.Traditional identification methods cannot comprehensively capture the diversity of gut microbiota.Currently,with the rapid development of molecular biology,the classification and identification methods for gut microbiota have evolved from the initial phenotypic and chemical identification to identification at the molecular level.This review integrates the main methods of gut microbiota identification and evaluates their application.We pay special attention to the research progress on molecular biological methods and focus on the application of high-throughput sequencing technology in the identification of gut microbiota.This revolutionary method for intestinal flora identification heralds a new chapter in our understanding of the microbial world.展开更多
文摘【意义】大环烷烃是一类具有单环结构而环碳数较大(n>10)的饱和脂肪烃类化合物,在油页岩、原油、土壤及高等植物中均有检出,其具有确切的生物母源信息,可以清晰地指示样品的原始沉积环境。大环烷烃碳数范围不固定,与长链烷基烯烃、烷基环己烷等化合物相比,不仅在色谱上具有相同的等间距流出特征,而且它们的质谱分子离子(C_(n)H_(2n))和特征碎片离子(m/z 97、111、125)也一模一样,极易造成误判,亟须对其结构特征进行精准厘定。【进展】系统梳理了相关的文献,并以澳大利亚悉尼盆地藻烛煤(torbanite)为对象,分离纯化单体化合物后完成核磁(Nuclear Magnetic Resonance,NMR)结构解析;类比环己烷断裂模式,提出三条质谱裂解途径,完整阐释了其特征碎片的生成机制;进一步归纳了大环烷烃可能的生物合成路线。【结论与展望】NMR结构鉴定表示大环烷烃具有特殊的单体饱和环烷烃结构。Torbanite中丛粒藻来源的大环烷烃类化合物最初的生物前体可能是长链的油酸,经长链不饱和聚醛中间体最终环化而成。未来可以逐步完善高等植物来源的大环烷烃的生物合成途径,并对其相关比值参数进行归纳总结以应用于实际地质样品中。
文摘蛋白质-蛋白质相互作用在细胞的生化功能中扮演极为重要的角色,深入解析蛋白质相互作用关系是理解细胞生命活动的关键。本研究以高尔基体蛋白73(golgi protein 73,GP73)为研究对象,利用经典的免疫共沉淀联合质谱技术系统挖掘了GP73的相互作用蛋白质,力求进一步解析GP73的分子功能。选取肝癌细胞系HepG2,利用慢病毒感染技术构建过表达GP73-3Flag的稳定细胞系,免疫共沉淀联合质谱检测鉴定出78个高置信的GP73相互作用蛋白质,生物信息学分析提示,GP73与近40个细胞核蛋白质存在相互作用,并参与RNA运输、剪接和翻译等生物学过程,进一步的免疫荧光和细胞核蛋白质分离实验证实,GP73在多种肿瘤细胞中的细胞核定位,在78个相互作用蛋白质的基础上进一步筛选出与mRNA剪接相关的蛋白质相互作用网络,并通过免疫共沉淀验证了GP73与HNRNPH3、SMN1、RBM14、NCBP1等7种蛋白质存在相互作用。Minigene剪接实验提示,过表达GP73抑制细胞对pre-mRNA的剪接效率。本研究拓展了对GP73蛋白功能的认识和理解,有助于解释其在细胞生物学中的重要角色及其与疾病的潜在关联。
文摘The gut microbiota is a complex ecosystem composed of many bacteria and their metabolites.It plays an irreplaceable role in human digestion,nutrient absorption,energy supply,fat metabolism,immune regulation,and many other aspects.Exploring the structure and function of the gut microbiota,as well as their key genes and metabolites,will enable the early diagnosis and auxiliary diagnosis of diseases,new treatment methods,better effects of drug treatments,and better guidance in the use of antibiotics.The identification of gut microbiota plays an important role in clinical diagnosis and treatment,as well as in drug research and development.Therefore,it is necessary to conduct a comprehensive review of this rapidly evolving topic.Traditional identification methods cannot comprehensively capture the diversity of gut microbiota.Currently,with the rapid development of molecular biology,the classification and identification methods for gut microbiota have evolved from the initial phenotypic and chemical identification to identification at the molecular level.This review integrates the main methods of gut microbiota identification and evaluates their application.We pay special attention to the research progress on molecular biological methods and focus on the application of high-throughput sequencing technology in the identification of gut microbiota.This revolutionary method for intestinal flora identification heralds a new chapter in our understanding of the microbial world.