期刊文献+
共找到934篇文章
< 1 2 47 >
每页显示 20 50 100
Research of Primary Agricultural Mechanization in Developing Countries 被引量:2
1
作者 LIU Hongxin 《Journal of Northeast Agricultural University(English Edition)》 CAS 2009年第4期63-69,共7页
For providing a correct and reasonable strategy to develop agricultural mechanization in developing countries, this paper took China as the representative to analyze the poor agricultural equipment service condition. ... For providing a correct and reasonable strategy to develop agricultural mechanization in developing countries, this paper took China as the representative to analyze the poor agricultural equipment service condition. It also put forward the ecology and social crisis brought out by the long-term and large-scale primary mechanization. According to the characteristics of national condition, this paper brought forward several certain policies and solutions, such as compelling to shorten the continuance cycle of traditional primary stage, seeking for new economic growth poles of high-added-value agricultural production by fully using the abundant labor force, etc. It is a feasible technical program to develop harmonious agricultural modernization in developing countries 展开更多
关键词 primary mechanization of agriculture sustainable development degeneration of soil quality RESOURCE ENVIRONMENT
在线阅读 下载PDF
Development on the Calculation Software Package of the Contribution Rate of Mechanization in Agriculture
2
作者 ZONGXiao-jie RENYu-dong 《Journal of Northeast Agricultural University(English Edition)》 CAS 2002年第1期63-67,共5页
This paper introduces a software specially in calculating the contribution rate of machanization in agriculture by usng economy math method,computer technology and Visual Basic 6.0 version.The software package has fri... This paper introduces a software specially in calculating the contribution rate of machanization in agriculture by usng economy math method,computer technology and Visual Basic 6.0 version.The software package has friendly interface,simple operating way and accurate,feasible calculating method.It greatly changes the condition in the past which had considerable lots of data and miscellaneous and trivial methods,which were even hard to seek answer.So it has very high practicl value. 展开更多
关键词 mechanization in agriculture the rat of contribution CALCULATION software package
在线阅读 下载PDF
无底物情况下来自Rhodococcus zopfii的腈水解酶中亲核进攻试剂CYS165的活性状态的探究(英文)
3
作者 张慧珠 高旭丹 梅晔 《南京大学学报(自然科学版)》 北大核心 2025年第1期129-139,共11页
腈水解酶作为一类在工业应用中具有巨大价值的绿色生物催化剂,能够高效地催化腈基化合物转化为羧酸.尽管其应用广泛,但腈水解酶的具体催化机制仍然不明确.先前的研究揭示了腈水解酶活性中心的GLU-LYS-GLU-CYS四联体在催化中起到关键作用... 腈水解酶作为一类在工业应用中具有巨大价值的绿色生物催化剂,能够高效地催化腈基化合物转化为羧酸.尽管其应用广泛,但腈水解酶的具体催化机制仍然不明确.先前的研究揭示了腈水解酶活性中心的GLU-LYS-GLU-CYS四联体在催化中起到关键作用,其中CYS残基作为亲核试剂攻击腈基,其硫醇基团的电离是反应中的一个关键步骤,然而,CYS的去质子化过程尚未被清晰揭示.研究聚焦于来自Rhodococcus zopfii(RzNIT)的腈水解酶,并研究了底物尚未进入酶活性位点时CYS165的质子化状态.通过对CYS165去质子化可能路径的详细分析,确认了在无底物状态下RzNIT中的CYS165处于中性状态.这一发现为进一步研究RzNIT的催化机制奠定了基础. 展开更多
关键词 ONIOM(the Own n-Layered Integrated Molecular Orbital and Molecular Mechanics) 腈水解酶 能垒 催化机制
在线阅读 下载PDF
Annealing temperature influence on forming limit curve and fracture toughness of aluminium/silver bilayer sheets 被引量:1
4
作者 Mohammad Delshad GHOLAMI Mojtaba KHODAKARAMI +1 位作者 Mohammad ABADIAN Ramin HASHEMI 《Journal of Central South University》 2025年第1期34-48,共15页
This article examines the influence of annealing temperature on fracture toughness and forming limit curves of dissimilar aluminum/silver sheets.In the cold roll bonding process,after brushing and acid washing,the pre... This article examines the influence of annealing temperature on fracture toughness and forming limit curves of dissimilar aluminum/silver sheets.In the cold roll bonding process,after brushing and acid washing,the prepared surfaces are placed on top of each other and by rolling with reduction more than 50%,the bonding between layers is established.In this research,the roll bonding process was done at room temperature,without the use of lubricants and with a 70%thickness reduction.Then,the final thickness of the Ag/Al bilayer sheet reached 350μm by several stages of cold rolling.Before cold rolling,it should be noted that to decrease the hardness created due to plastic deformation,the roll-bonded samples were subjected to annealing heat treatment at 400℃for 90 min.Thus,the final samples were annealed at 200,300 and 400℃for 90 min and cooled in a furnace to examine the annealing temperature effects.The uniaxial tensile and microhardness tests measured mechanical properties.Also,to investigate the fracture mechanism,the fractography of the cross-section was examined by scanning electron microscope(SEM).To evaluate the formability of Ag/Al bilayer sheets,forming limit curves were obtained experimentally through the Nakazima test.The resistance of composites to failure due to cracking was also investigated by fracture toughness.The results showed that annealing increases the elongation and formability of the Ag/Al bilayer sheet while reduces the ultimate tensile strength and fracture toughness.However,the changing trend is not the same at different temperatures,and according to the results,the most significant effect is obtained at 300℃and aluminum layers.It was also determined that by increasing annealing temperature,the fracture mechanism from shear ductile with small and shallow dimples becomes ductile with deep cavities. 展开更多
关键词 cold roll bonding Ag/Al bilayer sheet mechanical properties forming limit curve fracture toughness
在线阅读 下载PDF
Syntheses,crystal structures,and diametrically opposed mechanically-stimulated luminescence response of two Mg(Ⅱ)metal-organic frameworks
5
作者 CHEN Yukun FENG Kexin +2 位作者 ZHANG Bolun SONG Wentao ZHANG Jianjun 《无机化学学报》 北大核心 2025年第6期1227-1234,共8页
The reaction of Mg^(2+)and 5-{1,3-dioxo-1H-benzo[de]isoquinolin-2(3H)-yl}terephthalic acid(H_(2)L)leads to two metal-organic frameworks,[Mg(L)(DMF)_(2)(H_(2)O)_(2)]_(2)·5DMF·2H_(2)O(1)with a 1D structure and... The reaction of Mg^(2+)and 5-{1,3-dioxo-1H-benzo[de]isoquinolin-2(3H)-yl}terephthalic acid(H_(2)L)leads to two metal-organic frameworks,[Mg(L)(DMF)_(2)(H_(2)O)_(2)]_(2)·5DMF·2H_(2)O(1)with a 1D structure and[Mg_(2)(L)_(2)(DMSO)_(3)(H_(2)O)](2)with a 2D(4,4)-net structure.Interestingly,the two compounds exhibit distinct luminescent responses to external mechanical stimuli.1 exhibited exceptional resistance mechanical chromic luminescence(RMCL),which can be attributed to the predominant hydrogen bonds and the presence of high-boiling-point solvent molecules within its structure.2 had a reversible MCL property,which can be attributed to the dominantπ-πweak interactions,coupled with the reversible destruction/restoration of its crystallinity under grinding/fumigation.CCDC:2410963,1;2410964,2. 展开更多
关键词 metal-organic framework crystal structure mechanical chromic luminescence resistance mechanical chromic luminescence weak interaction
在线阅读 下载PDF
Effects of the oxygen transport properties of electrolytes on the reaction mechanisms in lithium-oxygen batteries
6
作者 Aijing Yan Zhuojun Zhang +1 位作者 Xu Xiao Peng Tan 《中国科学技术大学学报》 北大核心 2025年第2期35-42,34,I0001,I0002,共11页
Lithium-oxygen batteries attract considerable attention due to exceptionally high theoretical energy density,while the development remains in its early stage.As is widely suggested,the solution mechanism induces great... Lithium-oxygen batteries attract considerable attention due to exceptionally high theoretical energy density,while the development remains in its early stage.As is widely suggested,the solution mechanism induces greater discharge capacity,while the surface mechanism induces greater cycle stability.Therefore,battery performance can be improved by adjusting the reaction mechanism.Previous studies predominantly focus on extremely thin or flat electrodes.In contrast,this work utilizes thick electrodes,emphasizing the importance of mass transport.Given that the electrolyte solvent is the main site of mass transport,the effects of two typical solvents on mass transport and battery performance are investigated:dimethyl sulfoxide with low viscosity and a high O_(2) diffusion rate and tetraethylene glycol dimethyl ether with high O_(2) solubility and high Li+transport capability.The results reveal a novel pathway for reaction mechanism induction where the mechanism varies with the spatial position of the electrode.As the spatial distribution of the electrode progresses,a layered appearance of solution mechanism products,transition state products,and surface mechanism products emerges,which is attributed to the increase in the mass transfer resistance.This work presents a distinct perspective on the way solvents influence reaction pathways and offers a new approach to regulating reaction pathways. 展开更多
关键词 Li-O_(2)battery nonaqueous electrolyte oxygen transport property solution mechanism surface mechanism
在线阅读 下载PDF
Advances in the use of biomass-derived carbons for sodium-ion batteries
7
作者 SUN Mei-ci QI Shuo-lin +5 位作者 ZHAO Yun-he CHEN Chun-xia TAN Li-chao HU Zhong-li WU Xiao-liang ZHANG Wen-li 《新型炭材料(中英文)》 北大核心 2025年第1期1-49,共49页
Sodium-ion batteries(SIBs)have emerged as a promising alternative to commercial lithium-ion batteries be-cause of the similar properties of Li and Na as well as the abundance and accessibility of sodium resources.The ... Sodium-ion batteries(SIBs)have emerged as a promising alternative to commercial lithium-ion batteries be-cause of the similar properties of Li and Na as well as the abundance and accessibility of sodium resources.The devel-opment of anode materials with a high capacity,excellent rate performance,and long cycle life is the key to the indus-trialization of SIBs.Biomass-derived carbon(BDC)anode materials synthesized from resource-rich,low-cost,and re-newable biomass have been extensively researched and their excellent sodium storage performance has been proven,making them the most promising new low-cost and high-performance anode material for SIBs.This review first intro-duces the sources of BDCs,including waste biomass such as plants,animals,and microorganisms,and then describes sev-eral methods for preparing BDC anode materials,including carbonization,chemical activation,and template methods.The storage mechanism and kinetic process of Na^(+)in BDCs are then considered as well as their structure control.The electrochemical properties of sodium-ion storage in BDCs with different structures are examined,and suggestions for future re-search are made. 展开更多
关键词 BIOMASS Carbon Anode materials Sodium storage mechanism Microstructure
在线阅读 下载PDF
Mechanism for Hydrothermal-carbothermal Synthesis of AlN Nanopowders
8
作者 FENG Guanzheng YANG Jian +3 位作者 ZHOU Du CHEN Qiming XU Wentao ZHOU Youfu 《无机材料学报》 北大核心 2025年第1期104-110,I0009-I0011,共10页
Currently,the carbothermal reduction-nitridation(CRN)process is the predominant method for preparing aluminum nitride(AlN)powder.Although AlN powder prepared by CRN process exhibits high purity and excellent sintering... Currently,the carbothermal reduction-nitridation(CRN)process is the predominant method for preparing aluminum nitride(AlN)powder.Although AlN powder prepared by CRN process exhibits high purity and excellent sintering activity,it also presents challenges such as the necessity for high reaction temperatures and difficulties in achieving uniform mixing of its raw materials.This study presents a comprehensive investigation into preparation process of AlN nanopowders using a combination of hydrothermal synthesis and CRN.In the hydrothermal reaction,a homogeneous composite precursor consisting of carbon and boehmite(γ-AlOOH)is synthesized at 200℃using aluminum nitrate as the aluminum source,sucrose as the carbon source,and urea as the precipitant.During the hydrothermal process,the precursor develops a core-shell structure,with boehmite tightly coated with carbon(γ-AlOOH@C)due to electrostatic attraction.Compared with conventional precursor,the hydrothermal hybrid offers many advantages,such as ultrafine particles,uniform particle size distribution,good dispersion,high reactivity,and environmental friendliness.The carbon shell enhances thermodynamic stability of γ-Al_(2)O_(3) compared to the corundum phase(α-Al_(2)O_(3))by preventing the loss of the surface area in alumina.This stability enables γ-Al_(2)O_(3) to maintain high reactivity during CRN process,which initiates at 1300℃,and concludes at 1400℃.The underlying mechanisms are substantiated through experiments and thermodynamic calculations.This research provides a robust theoretical and experimental foundation for the hydrothermal combined carbothermal preparation of non-oxide ceramic nanopowders. 展开更多
关键词 aluminum nitride carbothermal reduction-nitridation MECHANISM hydrothermal synthesis PRECURSOR
在线阅读 下载PDF
Effects of Warm Rolling on the Microstructure and Mechanical Properties of Low-Cr FeCrAl Alloys at Room and Elevated Temperatures
9
作者 CHEN Gangming WANG Hui HUANG Xuefei 《材料导报》 北大核心 2025年第9期178-188,共11页
The effects of different warm rolling(WR)reductions on the microstructure and mechanical properties of low-Cr FeCrAl alloys at both room and elevated temperatures were investigated.The study revealed that when the WR ... The effects of different warm rolling(WR)reductions on the microstructure and mechanical properties of low-Cr FeCrAl alloys at both room and elevated temperatures were investigated.The study revealed that when the WR reduction is small,it effectively refines the grains and forms a large number of subgrains in the matrix,while also inducing the dissolution of the Laves phase.This enhances the mechanical properties of FeCrAl alloys primarily through grain refinement and solid solution strengthening.Conversely,with larger WR reductions,the grain refinement effect diminishes,but a significant number of Laves phases form in the matrix,strengthening the alloys primarily through precipitation strengthening.WR exhibited a remarkable enhancing effect on the comprehensive mechanical properties at both room and high temperatures,with a signi-ficant enhancement in ductility at high temperatures.Notably,a 10%WR reduction resulted in the optimal overall mechanical properties at both room and elevated temperatures. 展开更多
关键词 FeCrAl alloy low-Cr warm rolling Laves phases mechanical property
在线阅读 下载PDF
Realized heritability,cross-resistance patterns,and mechanisms of resistance to thiotraniliprole in Plutella xylostella(L.)
10
作者 YUAN Jing JIANG Yaqin +5 位作者 CHANG Hui LEI Qiyang OUYANG Mingxun CHEN Yingchong CHEN Jing CHEN Jie 《农药学学报》 北大核心 2025年第2期311-321,共11页
Plutella xylostella,a major pest of cruciferous vegetables worldwide,has developed resistance to diamide insecticides.Thiotraniliprole,a novel synthetic diamide insecticide,exhibits excellent activity against P.xylost... Plutella xylostella,a major pest of cruciferous vegetables worldwide,has developed resistance to diamide insecticides.Thiotraniliprole,a novel synthetic diamide insecticide,exhibits excellent activity against P.xylostella.In the present study,we aimed to confirm the resistance risk,cross-resistance,and mechanisms of resistance to thiotraniliprole in P.xylostella.After 40 consecutive generations of thiotraniliprole selection,we obtained a thiotraniliprole-resistance P.xylostella strain with a 5141.58-fold resistance ratio(RR)to thiotraniliprole.The overall realized heritability(h^(2))value of resistance was estimated as 0.9 using threshold trait analysis,indicating that the risk of developing resistance to thiotraniliprole is high in P.xylostella.The thiotraniliprole-resistant(TR)strain showed noticeable cross-resistance to chlorantraniliprole(RR=44670.05),cyantraniliprole(RR=7038.58),and tetrachlorantraniliprole(RR=1506.01),but no cross-resistance to tolfenpyrad,indoxacarb,diafenthiuron,or abamectin compared with the susceptible(S)strain.The enzyme assay data showed that the activities of glutathione-S transferase(GST),carboxylesterase(CarE),and the content of cytochrome P450 monooxygenase(P450s)were significantly higher in the TR strain than in the S strain.Sequencing of the full-length PxRyR cDNA revealed the gene site I4790K in the TR strain with a 100%frequency.This mutation in PxRyR likely underlies the high-level cross-resistance between thiotraniliprole and three other diamide insecticides.These findings provide valuable information for optimizing resistance management strategies to delay thiotraniliprole resistance development and ensure sustainable control of P.xylostella. 展开更多
关键词 Plutella xylostella thiotraniliprole realized heritability CROSS-RESISTANCE detoxifying enzymes ryanodine receptor resistance mechanisms
在线阅读 下载PDF
Research Status of High-Entropy Alloys Based on Artificial Intelligence Technology
11
作者 YU Zhiqi ZHAO Yanchun +5 位作者 XUE Baorui DANG Wenxia MA Huwen SU Yu LAN Yunbo FENG Li 《有色金属(中英文)》 北大核心 2025年第5期735-747,共13页
High-Entropy Alloys(HEAs)exhibit significant potential across multiple domains due to their unique properties.However,conventional research methodologies face limitations in composition design,property prediction,and ... High-Entropy Alloys(HEAs)exhibit significant potential across multiple domains due to their unique properties.However,conventional research methodologies face limitations in composition design,property prediction,and process optimization,characterized by low efficiency and high costs.The integration of Artificial Intelligence(AI)technologies has provided innovative solutions for HEAs research.This review presented a detailed overview of recent advancements in AI applications for structural modeling and mechanical property prediction of HEAs.Furthermore,it discussed the advantages of big data analytics in facilitating alloy composition design and screening,quality control,and defect prediction,as well as the construction and sharing of specialized material databases.The paper also addressed the existing challenges in current AI-driven HEAs research,including issues related to data quality,model interpretability,and cross-domain knowledge integration.Additionally,it proposed prospects for the synergistic development of AI-enhanced computational materials science and experimental validation systems. 展开更多
关键词 high-entropy alloys artificial intelligence structural modeling mechanical property big data
在线阅读 下载PDF
Recent Advances in Non-Enzymatic Electrochemical Sensors for Theophylline Detection
12
作者 Ernis Gustria Putri Yulia M T A +5 位作者 Syauqi Muhammad Iqbal Jiwanti Prastika Krisma Hartati Yeni Wahyuni Kondo Takeshi Anjani Qonita Kurnia Gunlazuardi Jarnuzi 《电化学(中英文)》 北大核心 2025年第3期1-24,共24页
Detection of target analytes at low concentrations is significant in various fields,including pharmaceuticals,healthcare,and environmental protection.Theophylline(TP),a natural alkaloid used as a bronchodilator to tre... Detection of target analytes at low concentrations is significant in various fields,including pharmaceuticals,healthcare,and environmental protection.Theophylline(TP),a natural alkaloid used as a bronchodilator to treat respiratory disorders such as asthma,bronchitis,and emphysema,has a narrow therapeutic window with a safe plasma concentration ranging from 55.5-111.0μmol·L^(-1)in adults.Accurate monitoring of TP levels is essential because too low or too high can cause se-rious side effects.In this regard,non-enzymatic electrochemical sensors offer a practical solution with rapidity,portability,and high sensitivity.This article aims to provide a comprehensive review of the recent developments of non-enzymatic electrochemical sensors for TP detection,highlighting the basic principles,electro-oxidation mechanisms,catalytic effects,and the role of modifying materials on electrode performance.Carbon-based electrodes such as glassy carbon electrodes(GCEs),carbon paste electrodes(CPEs),and carbon screen-printed electrodes(SPCEs)have become the primary choices for non-enzymatic sensors due to their chemical stability,low cost,and flexibility in modification.This article identifies the sig-nificant contribution of various modifying materials,including nanomaterials such as carbon nanotubes(CNTs),graphene,metal oxides,and multi-element nanocomposites.These modifications enhance sensors’electron transfer,sensitivity,and selectivity in detecting TP at low concentrations in complex media such as blood plasma and pharmaceutical samples.The electro-oxidation mechanism of TP is also discussed in depth,emphasizing the hydroxyl and carbonyl reaction pathways strongly influenced by pH and electrode materials.These mechanisms guide the selection of the appropriate electrode ma-terial for a particular application.The main contribution of this article is to identify superior modifying materials that can improve the performance of non-enzymatic electrochemical sensors.In a recent study,the combination of multi-element nanocomposites based on titanium dioxide(TiO_(2)),CNTs,and gold nanoparticles(AuNPs)resulted in the lowest detection limit of 3×10^(-5)μmol·L^(-1),reflecting the great potential of these materials for developing high-performance electrochemical sensors.The main conclusion of this article is the importance of a multidisciplinary approach in electrode material design to support the sensitivity and selectivity of TP detection.In addition,there is still a research gap in understanding TP’s more detailed oxidation mechanism,especially under pH variations and complex environments.Therefore,further research on electrode modification and analysis of the TP oxidation mechanism are urgently needed to improve the accuracy and sta-bility of the sensor while expanding its applications in pharmaceutical monitoring and medical diagnostics.By integrating various innovative materials and technical approaches,this review is expected to be an essential reference for developing efficient and affordable non-enzymatic electrochemical sensors. 展开更多
关键词 Theophylline detection Non-enzymatic sensors Electrochemical sensors Modifier electrode Reaction mechanism
在线阅读 下载PDF
Defect Dipole Thermal-stability to the Electro-mechanical Properties of Fe Doped PZT Ceramics
13
作者 SUN Yuxuan WANG Zheng +5 位作者 SHI Xue SHI Ying DU Wentong MAN Zhenyong ZHENG Liaoying LI Guorong 《无机材料学报》 北大核心 2025年第5期545-551,I0009-I0010,共9页
The accepted doping ion in Ti^(4+)-site of PbZr_(y)Ti_(1–y)O_(3)(PZT)-based piezoelectric ceramics is a well-known method to increase mechanical quality factor(Q_(m)),since the acceptor coupled by oxygen vacancy beco... The accepted doping ion in Ti^(4+)-site of PbZr_(y)Ti_(1–y)O_(3)(PZT)-based piezoelectric ceramics is a well-known method to increase mechanical quality factor(Q_(m)),since the acceptor coupled by oxygen vacancy becomes defect dipole,which prevents the domain rotation.In this field,a serious problem is that generally,Qm decreases as the temperature(T)increases,since the oxygen vacancies are decoupled from the defect dipoles.In this work,Q_(m) of Pb_(0.95)Sr_(0.05)(Zr_(0.53)Ti_(0.47))O_(3)(PSZT)ceramics doped by 0.40%Fe_(2)O_(3)(in mole)abnormally increases as T increases,of which the Qm and piezoelectric coefficient(d_(33))at room temperature and Curie temperature(TC)are 507,292 pC/N,and 345℃,respectively.The maximum Qm of 824 was achieved in the range of 120–160℃,which is 62.52%higher than that at room temperature,while the dynamic piezoelectric constant(d_(31))was just slightly decreased by 3.85%.X-ray diffraction(XRD)and piezoresponse force microscopy results show that the interplanar spacing and the fine domains form as temperature increases,and the thermally stimulated depolarization current shows that the defect dipoles are stable even the temperature up to 240℃.It can be deduced that the aggregation of oxygen vacancies near the fine domains and defect dipole can be stable up to 240℃,which pins domain rotation,resulting in the enhanced Q_(m) with the increasing temperature.These results give a potential path to design high Q_(m) at high temperature. 展开更多
关键词 defect dipole temperature characteristic oxygen vacancy electro-mechanical property mechanical quality factor hardening doping
在线阅读 下载PDF
Synthesis of hexagonal diamond:A review
14
作者 CHEN De-si LI Heng-yu +1 位作者 DONG Jia-jun YAO Ming-guang 《新型炭材料(中英文)》 北大核心 2025年第3期584-596,共13页
Lonsdaleite,also known as hexagonal diamond,is an allotrope of carbon with a hexagonal crystal structure,which was discovered in the nanostructure of the Canyon Diablo meteorite.Theoretical calculations have shown tha... Lonsdaleite,also known as hexagonal diamond,is an allotrope of carbon with a hexagonal crystal structure,which was discovered in the nanostructure of the Canyon Diablo meteorite.Theoretical calculations have shown that this structure gives it exceptional physical properties that exceed those of cubic diamond,making it highly promising for groundbreaking applications in superhard cutting tools,wide-bandgap semiconductor devices,and materials for extreme environments.As a result,the controllable synthesis of hexagonal diamond has emerged as a cutting-edge research focus in materials science.This review briefly outlines the progress in this area,with a focus on the mechanisms governing its key synthesis conditions,its intrinsic physical properties,and its potential applications in various fields. 展开更多
关键词 Hexagonal diamond GRAPHITE High pressure and high temperature Phase transition mechanism Widebandgap semiconductors
在线阅读 下载PDF
Improving the oxidation resistance of HfB_(2)-SiC coatings on carbon/carbon composites by CeO_(2) doping
15
作者 HE Chang-lin SHANG Zhi-chao +10 位作者 WANG Wei-guang LI Xiang-ming WANG Kun CHEN Yue-xing BAI Xin-tan WANG Pei-pei JI Xiang REN Xuan-ru Evgeny A Levashov Ph V Kiryukhantsev-Korneev FENG Pei-zhong 《新型炭材料(中英文)》 北大核心 2025年第3期688-702,共15页
To improve the oxidation resistance of HfB_(2)-SiC coatings on carbon/carbon composites at 1700°C in air,CeO_(2) was introduced to improve oxygen blocking and its mechanism was investigated.During the rapid oxida... To improve the oxidation resistance of HfB_(2)-SiC coatings on carbon/carbon composites at 1700°C in air,CeO_(2) was introduced to improve oxygen blocking and its mechanism was investigated.During the rapid oxidation stage,CeO_(2) accelerated the formation of a multiphase glass layer on the coating surface.The maximum oxidation rates of CeO_(2)-HfB2-SiC coatings with 1%,3%,and 5%CeO_(2) were 24.1%,20.3%,and 53.2%higher than that of the unmodified HfB2-SiC coating,respectively.In the stable oxidation stage,the maximum oxidation rates of coatings with 1%and 3%CeO_(2) decreased by 31.4%and 21.9%,respectively,demonstrating adequate inert protection.CeO_(2) is a“coagulant”and“stabilizer”in the composite glass layer.However,increasing the CeO_(2) content accelerates the reaction between the SiO_(2) glass phase and SiC,leading to a higher SiO_(2) consumption and reduced self-healing ability of the glass layer.The 1%CeO_(2)-60%HfB2-39%SiC coating showed improved glass layer viscosity and stability,moderate SiO_(2) consumption,and better self-healing ability,significantly boosting the oxidation protection of the coating. 展开更多
关键词 HfB_(2)-SiC coatings CeO_(2) Oxidation resistance Self-healing ability MECHANISM
在线阅读 下载PDF
Simulation and Experimental Analysis of Mechanical Properties of a Bidirectional Adjustable Magnetorheological Fluid Damper
16
作者 YANG Zhi−rong YE Zhong−min +2 位作者 LIU Jin−liang RAO Zhu−shi XIAO Wang−qiang 《船舶力学》 北大核心 2025年第6期1000-1012,共13页
The aim of this study is to address the issues associated with traditional magnetorheological fluid(MRF)dampers,such as insufficient damping force after power failure and susceptibility to settlement.In order to achie... The aim of this study is to address the issues associated with traditional magnetorheological fluid(MRF)dampers,such as insufficient damping force after power failure and susceptibility to settlement.In order to achieve this,a bidirectional adjustable MRF damper was designed and developed.Magnetic field simulation analysis was conducted on the damper,along with simulation analysis on its dynamic characteristics.The dynamic characteristics were ultimately validated through experimental testing on the material testing machine,thereby corroborating the theoretical simulation results.Concurrently,this process generated valuable test data for subsequent implementation of the semi-active vibration control system.The simulation and test results demonstrate that the integrated permanent magnet effectively accomplishes bidirectional regulation.The magnetic induction intensity of the damping channel is 0.2 T in the absence of current,increases to 0.5 T when a maximum forward current of 4 A is applied,and becomes 0 T when a maximum reverse current of 3.8 A is applied.When the excitation amplitude is 8 mm and the frequency is 2 Hz,with the applied currents varying,the maximum damping force reaches 8 kN,while the minimum damping force measures at 511 N.Additionally,at zero current,the damping force stands at 2 kN,which aligns closely with simulation results.The present paper can serve as a valuable reference for the design and research of semi-active MRF dampers. 展开更多
关键词 magnetorheological fluid(MRF) DAMPER permanent magnet finite element analysis test of mechanical properties
在线阅读 下载PDF
Novel CO_(2)Adsorbent Prepared with ZSM-5/MCM-48 as Support:High Adsorption Property and Its Mechanism
17
作者 WEI Jianwen ZHANG Lijuan +3 位作者 GENG Linlin LI Yu LIAO Lei WANG Dunqiu 《无机材料学报》 北大核心 2025年第7期833-839,I0015,I0016,共9页
Adsorption by solid amine adsorbent is a promising technology for decarbonization of flue gas.However,adsorption properties of many solid amine adsorbents need to be enhanced,and it is necessary to further study the C... Adsorption by solid amine adsorbent is a promising technology for decarbonization of flue gas.However,adsorption properties of many solid amine adsorbents need to be enhanced,and it is necessary to further study the CO_(2)adsorption mechanism.A novel CO_(2)adsorbent with high capacity was obtained by grafting 3-aminopropyltriethoxysilane(APTES)on a micro-mesoporous composite molecular sieve ZSM-5/MCM-48 as the support,and then impregnated with tetraethylenepentamine(TEPA)or polyethyleneimine(PEI).The maximum adsorption capacity of APTES-ZSM-5/MCM-48-TEPA-60(A-ZM-T60),loaded with 60%(in mass)TEPA,for CO_(2)reaches 5.82 mmol·g^(-1) at 60℃in 15%(in volume)CO_(2).Carbamate,alkyl ammonium carbamate and carbonate are generated during the chemical adsorption,which is dominant for CO_(2)adsorption because of the reaction between CO_(2)and amino groups on the adsorbent,simultaneously accompanied by weak physical adsorption.All above data confirm that these composites display an outstanding adsorption performance with a bright future for CO_(2)capture from flue gas after desulfurization. 展开更多
关键词 ZSM-5/MCM-48 amino-bifunctionalization CO_(2)capture adsorption kinetics adsorption mechanism
在线阅读 下载PDF
Enhancing energy density in planar micro-supercapacitors:The role of few-layer graphite/carbon black/NiCo_(2)O_(4) composite materials
18
作者 ZHANG Wanggang HUANG Lei +3 位作者 WANG Menghu WANG Jian WEI Aili LIU Yiming 《燃料化学学报(中英文)》 北大核心 2025年第5期646-662,共17页
The advancement of planar micro-supercapacitors(PMSCs)for micro-electromechanical systems(MEMS)has been significantly hindered by the challenge of achieving high energy and power densities.This study addresses this is... The advancement of planar micro-supercapacitors(PMSCs)for micro-electromechanical systems(MEMS)has been significantly hindered by the challenge of achieving high energy and power densities.This study addresses this issue by leveraging screen-printing technology to fabricate high-performance PMSCs using innovative composite ink.The ink,a synergistic blend of few-layer graphene(Gt),carbon black(CB),and NiCo_(2)O_(4),was meticulously mixed to form a conductive and robust coating that enhanced the capacitive performance of the PMSCs.The optimized ink formulation and printing process result in a micro-supercapacitor with an exceptional areal capacitance of 18.95 mF/cm^(2)and an areal energy density of 2.63μW·h/cm^(2)at a current density of 0.05 mA/cm^(2),along with an areal power density of 0.025 mW/cm^(2).The devices demonstrated impressive durability with a capacitance retention rate of 94.7%after a stringent 20000-cycle test,demonstrating their potential for long-term applications.Moreover,the PMSCs displayed excellent mechanical flexibility,with a capacitance decrease of only 3.43%after 5000 bending cycles,highlighting their suitability for flexible electronic devices.The ease of integrating these PMSCs into series and parallel configurations for customized power further underscores their practicality for integrated power supply solutions in various technologies. 展开更多
关键词 graphite/carbon black composite NiCo_(2)O_(4) screen printing planar micro-supercapacitor energy density mechanical flexibility
在线阅读 下载PDF
Innovative dispersion techniques of graphene nanoplatelets(GNPs)through mechanical stirring and ultrasonication:Impact on morphological,mechanical,and thermal properties of epoxy nanocomposites
19
作者 Vasi Uddin Siddiqui S.M.Sapuan Mohd Roshdi Hassan 《Defence Technology(防务技术)》 2025年第1期13-25,共13页
Graphene nanoplatelets(GNPs)have attracted tremendous interest due to their unique properties and bonding capabilities.This study focuses on the effect of GNP dispersion on the mechanical,thermal,and morphological beh... Graphene nanoplatelets(GNPs)have attracted tremendous interest due to their unique properties and bonding capabilities.This study focuses on the effect of GNP dispersion on the mechanical,thermal,and morphological behavior of GNP/epoxy nanocomposites.This study aims to understand how the dispersion of GNPs affects the properties of epoxy nanocomposite and to identify the best dispersion approach for improving mechanical performance.A solvent mixing technique that includes mechanical stirring and ultrasonication was used for producing the nanocomposites.Fourier transform infrared spectroscopy was used to investigate the interaction between GNPs and the epoxy matrix.The measurements of density and moisture content were used to confirm that GNPs were successfully incorporated into the nanocomposite.The findings showed that GNPs are successfully dispersed in the epoxy matrix by combining mechanical stirring and ultrasonication in a single step,producing well-dispersed nanocomposites with improved mechanical properties.Particularly,the nanocomposites at a low GNP loading of 0.1 wt%,demonstrate superior mechanical strength,as shown by increased tensile properties,including improved Young's modulus(1.86 GPa),strength(57.31 MPa),and elongation at break(4.98).The nanocomposite with 0.25 wt%GNP loading performs better,according to the viscoelastic analysis and flexural properties(113.18 MPa).Except for the nanocomposite with a 0.5 wt%GNP loading,which has a higher thermal breakdown temperature,the thermal characteristics do not significantly alter.The effective dispersion of GNPs in the epoxy matrix and low agglomeration is confirmed by the morphological characterization.The findings help with filler selection and identifying the best dispersion approach,which improves mechanical performance.The effective integration of GNPs and their interaction with the epoxy matrix provides the doorway for additional investigation and the development of sophisticated nanocomposites.In fields like aerospace,automotive,and electronics where higher mechanical performance and functionality are required,GNPs'improved mechanical properties and successful dispersion present exciting potential. 展开更多
关键词 Graphene nanoplatelets Epoxy Nanocomposites Mechanical properties Thermal properties Mechanical stirrer Sonication
在线阅读 下载PDF
A comprehensive review on elucidating the host disease resistance mechanism from the perspective of the interaction between cotton and Verticillium dahliae
20
作者 ZHANG Yalin ZHAO Lihong +8 位作者 LI Dongpo LI Ziming FENG Hongjie FENG Zili WEI Feng ZHOU Jinglong MA Zhiying YANG Jun ZHU Heqin 《Journal of Cotton Research》 2025年第1期129-142,共14页
Verticillium wilt,caused by the infamous pathogen Verticillium dahliae,presents a primary constraint on cotton cul-tivation worldwide.The complexity of disease resistance in cotton and the largely unexplored interacti... Verticillium wilt,caused by the infamous pathogen Verticillium dahliae,presents a primary constraint on cotton cul-tivation worldwide.The complexity of disease resistance in cotton and the largely unexplored interaction dynamics between the cotton plant host and V.dahliae pathogen pose a crucial predicament for effectively managing cotton Verticillium wilt.Nevertheless,the most cost-effective approach to controlling this disease involves breeding and cul-tivating resistant cotton varieties,demanding a meticulous analysis of the mechanisms underlying cotton’s resistance to Verticillium wilt and the identification of pivotal genes.These aspects constitute focal points in disease-resistance breeding programs.In this review,we comprehensively discuss genetic inheritance associated with Verticillium wilt resistance in cotton,the advancements in molecular markers for disease resistance,the functional investiga-tion of resistance genes in cotton,the analysis of pathogenicity genes in V.dahliae,as well as the intricate interplay between cotton and this fungus.Moreover,we delve into the future prospects of cutting-edge research on cotton Verticillium wilt,aiming to proffer valuable insights for the effective management of this devastating fungus. 展开更多
关键词 Cotton Verticillium wilt Verticillium dahliae Resistance inheritance Disease resistance mechanism Interaction mechanism
在线阅读 下载PDF
上一页 1 2 47 下一页 到第
使用帮助 返回顶部