Based on the geological conditions of coal mining face No.15-14120 at No.8 mine of Pingdingshan coal mining group,the real-time evolution of coal-roof crack network with working face advancing was collected with the h...Based on the geological conditions of coal mining face No.15-14120 at No.8 mine of Pingdingshan coal mining group,the real-time evolution of coal-roof crack network with working face advancing was collected with the help of intrinsically safe borehole video instrument.And according to the geology of this working face,a discrete element model was calculated by UDEC.Combining in situ experimental data with numerical results,the relationship between the fractal dimension of boreholes'wall and the distribution of advanced abutment pressure was studied under the condition of mining advance.The results show that the variation tendency of fractal dimension and the abutment pressure has the same characteristic value.The distance between working face and the peak value of the abutment pressure has a slight increasing trend with the advancing of mining-face.When the working face is set as the original point,the trend of fractal dimension from the far place to the origin can be divided into three phases:constant,steady increasing and constant.And the turning points of these phases are the max-influencing distance(50 m)and peak value(15 m)of abutment pressure.展开更多
A fractal pore structure model of combustible cartridge cases was established by virtue of the fractal geometry. Pore structure information, such as backbone fractal dimension and pore fractal dimension, of four kinds...A fractal pore structure model of combustible cartridge cases was established by virtue of the fractal geometry. Pore structure information, such as backbone fractal dimension and pore fractal dimension, of four kinds of combustible cartridge case were obtained by mercury intrusion porosimetry (MIP) . The formation mechanism of fractal pore structure of combustible cartridge was studied. The results show that the backbone fractal dimension consists of the component and influenced by the component number and size of components; the pore percolation fractal dimension reflects the pore structures of components; and the fractal dimension of pore structure is positively relative to the tensile strength of combustible cartridge case.展开更多
The changes of fractal dimension ofPicea koraiensis seedlings under different light intensities in natural secondary forests was studied. The results showed that with the change of light environment, crown characters ...The changes of fractal dimension ofPicea koraiensis seedlings under different light intensities in natural secondary forests was studied. The results showed that with the change of light environment, crown characters ofPicea koraiensis seedlings exhibited a greater plastic in lateral number, lateral increment, lateral dry weight, and specific leaf area. The range of calculated fractal dimensions of seedling crowns was confined between 2.5728 and 2.1036, but maximum of fractal dimension achieved in term moderate shading and in extreme low light conditions fractal dimension was least.展开更多
The rough extent of leaf surface may be described by protruding of waxes which like as wart and of stomatal aperture and of width of the cuticular ledge around guard cells. Because the morphology of the leaf surface h...The rough extent of leaf surface may be described by protruding of waxes which like as wart and of stomatal aperture and of width of the cuticular ledge around guard cells. Because the morphology of the leaf surface has obviously similar itseIf, so one can use the theory of the fractal dimension to deal with the problems of leaf surface rough. The paper studied the rough extent and the result showed: with the leaf growing up, the waxes accumulate more and more, the leaf surface is more rough and the dimension is larger. The dimension D which indicates the rough extent of warts protruding is about 2. 10-2.20 on the above epidermis; On the beneath epidermis the dimension D of stomatal opening protruding is about 2.00-2.24, Maximum width L of cuticular ledge is about 1.0-7.4μm.展开更多
A simple and practical method to calculate the fractal dimension (FD) of amicron's projective surface profile based on fractal theory is proposed. Taking AI(OH)3 material particles as an example, the scanning ele...A simple and practical method to calculate the fractal dimension (FD) of amicron's projective surface profile based on fractal theory is proposed. Taking AI(OH)3 material particles as an example, the scanning electron microscope (SEM) photos of particles were processed using an image.processing software (IPS) Photoshop. Taking the pixel as a fixed yardstick with the enlargement of the size of the particle image, the box-dimension and circumference-area (C-S) methods were used to calculate the FD of the surface profile of the particle. The FD of 1.2623 of the classic Koch curve is obtained, which approximates the true value of 1.2628. The complexities of the object's boundary and surface micro-topography are simulated successfully by a generator method.展开更多
Fractal theory offers a powerful tool for the precise description and quantification of the complex pore structures in reservoir rocks,crucial for understanding the storage and migration characteristics of media withi...Fractal theory offers a powerful tool for the precise description and quantification of the complex pore structures in reservoir rocks,crucial for understanding the storage and migration characteristics of media within these rocks.Faced with the challenge of calculating the three-dimensional fractal dimensions of rock porosity,this study proposes an innovative computational process that directly calculates the three-dimensional fractal dimensions from a geometric perspective.By employing a composite denoising approach that integrates Fourier transform(FT)and wavelet transform(WT),coupled with multimodal pore extraction techniques such as threshold segmentation,top-hat transformation,and membrane enhancement,we successfully crafted accurate digital rock models.The improved box-counting method was then applied to analyze the voxel data of these digital rocks,accurately calculating the fractal dimensions of the rock pore distribution.Further numerical simulations of permeability experiments were conducted to explore the physical correlations between the rock pore fractal dimensions,porosity,and absolute permeability.The results reveal that rocks with higher fractal dimensions exhibit more complex pore connectivity pathways and a wider,more uneven pore distribution,suggesting that the ideal rock samples should possess lower fractal dimensions and higher effective porosity rates to achieve optimal fluid transmission properties.The methodology and conclusions of this study provide new tools and insights for the quantitative analysis of complex pores in rocks and contribute to the exploration of the fractal transport properties of media within rocks.展开更多
Methane in-situ explosion fracturing(MISEF)enhances permeability in shale reservoirs by detonating desorbed methane to generate detonation waves in perforations.Fracture propagation in bedding shale under varying expl...Methane in-situ explosion fracturing(MISEF)enhances permeability in shale reservoirs by detonating desorbed methane to generate detonation waves in perforations.Fracture propagation in bedding shale under varying explosion loads remains unclear.In this study,prefabricated perforated shale samples with parallel and vertical bedding are fractured under five distinct explosion loads using a MISEF experimental setup.High-frequency explosion pressure-time curves were monitored within an equivalent perforation,and computed tomography scanning along with three-dimensional reconstruction techniques were used to investigate fracture propagation patterns.Additionally,the formation mechanism and influencing factors of explosion crack-generated fines(CGF)were clarified by analyzing the morphology and statistics of explosion debris particles.The results indicate that methane explosion generated oscillating-pulse loads within perforations.Explosion characteristic parameters increase with increasing initial pressure.Explosion load and bedding orientation significantly influence fracture propagation patterns.As initial pressure increases,the fracture mode transitions from bi-wing to 4–5 radial fractures.In parallel bedding shale,radial fractures noticeably deflect along the bedding surface.Vertical bedding facilitates the development of transverse fractures oriented parallel to the cross-section.Bifurcation-merging of explosioninduced fractures generated CGF.CGF mass and fractal dimension increase,while average particle size decreases with increasing explosion load.This study provides valuable insights into MISEF technology.展开更多
Single-phase low current grounding faults areoften seen in power distribution system of coal mines.These faults are difficult to reliably identify.We propose a new method of single-phase ground fault protection based ...Single-phase low current grounding faults areoften seen in power distribution system of coal mines.These faults are difficult to reliably identify.We propose a new method of single-phase ground fault protection based upon a discernible matrix of the fractal dimension associated with line currents.The method builds on existing selective protection methods.Faulted feeders are distinguished using differences in the zero-sequence transient current fractal dimension.The current signals were first processed through a fast Fourier transform and then the characteristics of a faulted line were identified using a discernible matrix.The method of calculation is illustrated.The results show that the method involves simple calculations, is easy to do and is highly accurate.It is, therefore, suitable for distribution networks having different neutral grounding modes.展开更多
Fractal geometry is a potential new approach to analyze the root architecture, which may offer improved ways to quantify and summarize root system complexity as well as yield ecological and physiological insights into...Fractal geometry is a potential new approach to analyze the root architecture, which may offer improved ways to quantify and summarize root system complexity as well as yield ecological and physiological insights into the functional relevance of specific architectural patterns. Fractal analysis is a sensitive measure of root branching intensity and fractal dimension expresses the "space filling" properties of a structure. The objective of this study was to find out the fractal characteristics of root systems in a remote area of the Taklimakan desert in China. The entire root system of two naturally occurring species were excavated and exposed with shov- els in 2007. The species were Tamarix taklamakanensis and Calligonum roborovskii. A one-factorial ANOVA with species as factor showed statistically a highly significant difference in fractal dimensions, indicating differences in their pattern of root branching. There was no relationship between root diameter and two parameters of fractal root models a and q, representing general characteris- tics of root systems, for either species (a: the ratio of the sum of root cross-sectional areas after a branching to the cross-sectional area before root division; q: the distribution of the cross-sectional areas after branching). We have found significant linear relation- ships between the diameter after branching and root length and biomass respectively, because of the self-similarity of root branching. Branching rules are the same for roots of all sizes and lengths. Root biomass for the root systems of entire trees can be estimated by measuring the diameter of each root at the base of the trunk or the diameter after branching. We have shown that the diameter of each root at the base of the trunk and the diameter after branching are effective indices that can be measured easily in order to estimate the root lengths, biomass and other parameters of root architecture.展开更多
Image texture feature extraction is a classical means for biometric recognition. To extract effective texture feature for matching, we utilize local fractal auto-correlation to construct an effective image texture des...Image texture feature extraction is a classical means for biometric recognition. To extract effective texture feature for matching, we utilize local fractal auto-correlation to construct an effective image texture descriptor. Three main steps are involved in the proposed scheme: (i) using two-dimensional Gabor filter to extract the texture features of biometric images; (ii) calculating the local fractal dimension of Gabor feature under different orientations and scales using fractal auto-correlation algorithm; and (iii) linking the local fractal dimension of Gabor feature under different orientations and scales into a big vector for matching. Experiments and analyses show our proposed scheme is an efficient biometric feature extraction approach.展开更多
True triaxial rockburst experiments with four different unloading rates were performed on four prism specimens of granite sampled from Beishan, China. The damage evolution in the rockburst test was investigated from t...True triaxial rockburst experiments with four different unloading rates were performed on four prism specimens of granite sampled from Beishan, China. The damage evolution in the rockburst test was investigated from two aspects including fracture surface crack and fragment characteristics. The scanning electron microscopy was used to observe the micro crack information on fragment surface. Combing binarization and box counting dimensions, the fractal dimensions of cracks were obtained. Meanwhile,the fragments were collected and a sieving experiment was conducted. We weighed the fragments qualities, counted the amount of fragments and measured the fragments length, width and thickness.Utilizing four methods to calculate damage fractal dimensions of fragments, the trend of fractal value changing with unloading rates can be roughly described. It can be concluded from these experiments that the fractal dimension either for crack or for fragment holds a decreasing trend with the decreasing unloading rate, indicating a reduction of damage level.展开更多
The fractal Brownian motion is utilized to describe pore structures in porous media. A numerical model of laminar flow in porous media is developed, and the flow characteristics are comprehensively analyzed and compar...The fractal Brownian motion is utilized to describe pore structures in porous media. A numerical model of laminar flow in porous media is developed, and the flow characteristics are comprehensively analyzed and compared with those of homogeneous porous media. Moreover, the roles of the fractal dimension and porosity in permeability are quantitatively described. The results indicate that the pore structures of porous media significantly affect their seepage behaviors. The distributions of pressure and velocity in fractal porous media are both non-uniform;the streamline is no longer straight but tortuous. When Reynolds number Re < 1, the dimensionless permeability is independent of Reynolds number, but its further increase will lead to a smaller permeability. Moreover, due to the higher connectivity and enlarged equivalent aperture of internal channel network, the augment in porosity leads to the permeability enhancement, while it is small and insensitive to porosity variation when ε < 0.6. Fractal dimension also plays a significant role in the permeability of porous media. The increase in fractal dimension leads to the enhancement in pore connectivity and a decrease in channel tortuosity,which reduces the flow resistance and improves the transport capacity of porous media.展开更多
In this paper, simulated experiment device of coal and gas outburst was employed to perform the experiment on gas-containing coal extrusion. In the experiment, coal surface cracks were observed with a high-speed camer...In this paper, simulated experiment device of coal and gas outburst was employed to perform the experiment on gas-containing coal extrusion. In the experiment, coal surface cracks were observed with a high-speed camera and then the images were processed by sketch. Based on the above description, the paper studied the fractal dimension values from different positions of coal surface as well as their changing laws with time. The results show that there is a growing parabola trend of crack dimension value in the process of coal extrusion. Accordingly, we drew the conclusion that extruded coal crack evolution is a process of fractal dimension value increase. On the basis of fractal dimension values taken from different parts of coal masses, a fractal dimension of the contour map was drawn. Thus, it is clear that the contour map involves different crack fractal dimension values from different positions. To be specific, where there are complicated force and violent movement in coal mass, there are higher fractal dimension values, i.e., the further the middle of observation surface is from the exit of coal mass, and the lower the fractal dimension value is. In line with fractal geometry and energy theory of coal and gas outburst, this study presents the relation between fractal dimension and energy in the process of extruding. In conclusion, the evolution of crack fractal dimension value can signify that of energy, which has laid a solid foundation for the quantification research on the mechanism of gas-containing coal extrusion.展开更多
CeO2/ZnO nanocatalysts were prepared from the coupling route of homogeneous precipita-tion with microemulsion and the impregnation method. The catalytic performance of these two kinds of catalysts on the oxidative cou...CeO2/ZnO nanocatalysts were prepared from the coupling route of homogeneous precipita-tion with microemulsion and the impregnation method. The catalytic performance of these two kinds of catalysts on the oxidative coupling of methane with carbon dioxide was tested and compared; the frac-tal behavior of the nanocatalysts was analyzed using fractal theory. The CeO2/ZnO nanocatalysts had much higher activity than the catalysts prepared by impregnation method. There was no regular relation-ship between the average size of CeO2/ZnO nanocatalysts and their catalytic performance; however, the conversion of methane increased with the increase of the fractal dimension of CeO2/ZnO nanocatalysts.展开更多
A study was conducted at Msekera Regional Agricultural Research Station in eastern Zambia to (1) describe canopy branching properties of Acacia angustissima, Gliricidia sepium and Leucaena collinsii in short rotatio...A study was conducted at Msekera Regional Agricultural Research Station in eastern Zambia to (1) describe canopy branching properties of Acacia angustissima, Gliricidia sepium and Leucaena collinsii in short rotation forests, (2) test the existence of self similarity from repeated iteration of a structural unit in tree canopies, (3) examined intra-specifie relationships between functional branching characteristics, and (4) determine whether allometric equations for relating aboveground tree biomass to fractal properties could accurately predict aboveground biomass. Measurements of basal diameter (Din0) at 10em aboveground and total height (H), and aboveground biomass of 27 trees were taken, but only nine trees representative of variability of the stand and the three species were processed for functional branching analyses (FBA) of the shoot systems. For each species, fractal properties of three trees, includ- ing fractal dimension (Dfract), bifurcation ratios (p) and proportionality ratios (q) of branching points were assessed. The slope of the linear re- gression ofp on proximal diameter was not significantly different (P 〈 0.01) from zero and hence the assumption that p is independent of scale, a pre-requisite for use of fraetal branching rules to describe a fraetal tree canopy, was fulfilled at branching orders with link diameters 〉1.5 cm. The proportionality ration q for branching patterns of all tree species was constant at all scales. The proportion of q values 〉0.9 (fq) was 0.8 for all species. Mean fraetal dimension (Df^ct) values (1.5-1.7) for all species showed that branching patterns had an increasing magnitude of intricacy. Since Dfraet values were 〉1.5, branching patterns within species were self similar. Basal diameter (D10), proximal diameter and Dfraet described most of variations in aboveground biomass, suggesting that allometric equa- tions for relating aboveground tree biomass to fractal properties could accurately predict aboveground biomass. Thus, assessed Acacia, Gliri- cidia and Leucaena trees were fractals and their branching propertiescould be used to describe variability in size and aboveground biomass.展开更多
The paper discusses the fundamental conceptions and properties of fractal geometry.The definitions of fractal dimension are described and the mathods of calculating fractal dimension are introduced. The paper research...The paper discusses the fundamental conceptions and properties of fractal geometry.The definitions of fractal dimension are described and the mathods of calculating fractal dimension are introduced. The paper researches the peculiarities of fault diagnosis for logging truck engine and puts forward the technical way of diagnosing the faults with the help of the fractal geometry.展开更多
This paper analyzes the possibility to discriminate between convective precipitation and stratiform precipitation. This study aims to improve the measurement of rainfall from teledetection data obtained both on the gr...This paper analyzes the possibility to discriminate between convective precipitation and stratiform precipitation. This study aims to improve the measurement of rainfall from teledetection data obtained both on the ground and in space. For this, two parameters, fractal dimension and fractal lacunarity, are considered. To calculate the fractal dimension, we use the approach of box-counting and show that the fractal dimension differs between convectives cells and stratiforms ones. And then the fractal lacunarity parameter is calculated by using the sliding boxes algorithm. The study for all the regions shows that precipitation cells can be described by different lacunarities whatever the scale of analysis. We deduce that the two parameters, fractal dimension and fractal lacunarity, can be used to classify precipitations in convective regime and stratiform regime.展开更多
Internal wood surfaces can be treated as fractals, which are between Euclidean geometry and complete randomness. The fractal dimension Dfs is very informative in investigating the roughness of the internal surfaces of...Internal wood surfaces can be treated as fractals, which are between Euclidean geometry and complete randomness. The fractal dimension Dfs is very informative in investigating the roughness of the internal surfaces of wood. In this study, the water sorption isotherms, including adsorption and desorption isotherm, of untreated, benzene-alcohol extracted and delignified (after benzene-alcohol extracted) spruce (Cuninghamia lanceolata) were measured at 30℃. On the basis of these isotherms, the Dfs values were calculated by FHH equation, which is based on multimolecular sorption. The results showed that both groups of Dfs values (respectively calculated from adsorption and desorption isotherms) of untreated, benzene-alcohol extracted and delignified wood have same order, that is, untreated > benzene-alcohol extracted - delignified. Therefore, the conclusion can be made that the benzene-alcohol extractives have significant contribution to the fractal geometry of internal wood surfaces. Lignin also has influence on the fractal geometry, but this influence is very small while compared with that of the extractives. Moreover, the Dfs values calculated from adsorption isotherms are bigger than those from desorption isotherms.展开更多
基金financial support from the State Key Basic Research Program of China(Nos.2011CB201201and 2010CB226802)the National Natural Science Foundation of China(No.51204112)
文摘Based on the geological conditions of coal mining face No.15-14120 at No.8 mine of Pingdingshan coal mining group,the real-time evolution of coal-roof crack network with working face advancing was collected with the help of intrinsically safe borehole video instrument.And according to the geology of this working face,a discrete element model was calculated by UDEC.Combining in situ experimental data with numerical results,the relationship between the fractal dimension of boreholes'wall and the distribution of advanced abutment pressure was studied under the condition of mining advance.The results show that the variation tendency of fractal dimension and the abutment pressure has the same characteristic value.The distance between working face and the peak value of the abutment pressure has a slight increasing trend with the advancing of mining-face.When the working face is set as the original point,the trend of fractal dimension from the far place to the origin can be divided into three phases:constant,steady increasing and constant.And the turning points of these phases are the max-influencing distance(50 m)and peak value(15 m)of abutment pressure.
基金Sponsored by Young Fund Programs of Explosives&Propellants ( HYZ08010202-4)
文摘A fractal pore structure model of combustible cartridge cases was established by virtue of the fractal geometry. Pore structure information, such as backbone fractal dimension and pore fractal dimension, of four kinds of combustible cartridge case were obtained by mercury intrusion porosimetry (MIP) . The formation mechanism of fractal pore structure of combustible cartridge was studied. The results show that the backbone fractal dimension consists of the component and influenced by the component number and size of components; the pore percolation fractal dimension reflects the pore structures of components; and the fractal dimension of pore structure is positively relative to the tensile strength of combustible cartridge case.
基金the National Natural Science Foundation of China!(No.39670152)Chinese Academy of Scietlces.
文摘The changes of fractal dimension ofPicea koraiensis seedlings under different light intensities in natural secondary forests was studied. The results showed that with the change of light environment, crown characters ofPicea koraiensis seedlings exhibited a greater plastic in lateral number, lateral increment, lateral dry weight, and specific leaf area. The range of calculated fractal dimensions of seedling crowns was confined between 2.5728 and 2.1036, but maximum of fractal dimension achieved in term moderate shading and in extreme low light conditions fractal dimension was least.
文摘The rough extent of leaf surface may be described by protruding of waxes which like as wart and of stomatal aperture and of width of the cuticular ledge around guard cells. Because the morphology of the leaf surface has obviously similar itseIf, so one can use the theory of the fractal dimension to deal with the problems of leaf surface rough. The paper studied the rough extent and the result showed: with the leaf growing up, the waxes accumulate more and more, the leaf surface is more rough and the dimension is larger. The dimension D which indicates the rough extent of warts protruding is about 2. 10-2.20 on the above epidermis; On the beneath epidermis the dimension D of stomatal opening protruding is about 2.00-2.24, Maximum width L of cuticular ledge is about 1.0-7.4μm.
基金Project 50474003 supported by the National Natural Science Foundation of China
文摘A simple and practical method to calculate the fractal dimension (FD) of amicron's projective surface profile based on fractal theory is proposed. Taking AI(OH)3 material particles as an example, the scanning electron microscope (SEM) photos of particles were processed using an image.processing software (IPS) Photoshop. Taking the pixel as a fixed yardstick with the enlargement of the size of the particle image, the box-dimension and circumference-area (C-S) methods were used to calculate the FD of the surface profile of the particle. The FD of 1.2623 of the classic Koch curve is obtained, which approximates the true value of 1.2628. The complexities of the object's boundary and surface micro-topography are simulated successfully by a generator method.
基金supported by the National Natural Science Foundation of China (Nos.52374078 and 52074043)the Fundamental Research Funds for the Central Universities (No.2023CDJKYJH021)。
文摘Fractal theory offers a powerful tool for the precise description and quantification of the complex pore structures in reservoir rocks,crucial for understanding the storage and migration characteristics of media within these rocks.Faced with the challenge of calculating the three-dimensional fractal dimensions of rock porosity,this study proposes an innovative computational process that directly calculates the three-dimensional fractal dimensions from a geometric perspective.By employing a composite denoising approach that integrates Fourier transform(FT)and wavelet transform(WT),coupled with multimodal pore extraction techniques such as threshold segmentation,top-hat transformation,and membrane enhancement,we successfully crafted accurate digital rock models.The improved box-counting method was then applied to analyze the voxel data of these digital rocks,accurately calculating the fractal dimensions of the rock pore distribution.Further numerical simulations of permeability experiments were conducted to explore the physical correlations between the rock pore fractal dimensions,porosity,and absolute permeability.The results reveal that rocks with higher fractal dimensions exhibit more complex pore connectivity pathways and a wider,more uneven pore distribution,suggesting that the ideal rock samples should possess lower fractal dimensions and higher effective porosity rates to achieve optimal fluid transmission properties.The methodology and conclusions of this study provide new tools and insights for the quantitative analysis of complex pores in rocks and contribute to the exploration of the fractal transport properties of media within rocks.
基金funded by the National Key Research and Development Program of China(No.2020YFA0711800)the National Science Fund for Distinguished Young Scholars(No.51925404)+2 种基金the National Natural Science Foundation of China(No.12372373)the Postgraduate Research&Practice Innovation Program of Jiangsu Province(No.KYCX24_2909)the Graduate Innovation Program of China University of Mining and Technology(No.2024WLKXJ134)。
文摘Methane in-situ explosion fracturing(MISEF)enhances permeability in shale reservoirs by detonating desorbed methane to generate detonation waves in perforations.Fracture propagation in bedding shale under varying explosion loads remains unclear.In this study,prefabricated perforated shale samples with parallel and vertical bedding are fractured under five distinct explosion loads using a MISEF experimental setup.High-frequency explosion pressure-time curves were monitored within an equivalent perforation,and computed tomography scanning along with three-dimensional reconstruction techniques were used to investigate fracture propagation patterns.Additionally,the formation mechanism and influencing factors of explosion crack-generated fines(CGF)were clarified by analyzing the morphology and statistics of explosion debris particles.The results indicate that methane explosion generated oscillating-pulse loads within perforations.Explosion characteristic parameters increase with increasing initial pressure.Explosion load and bedding orientation significantly influence fracture propagation patterns.As initial pressure increases,the fracture mode transitions from bi-wing to 4–5 radial fractures.In parallel bedding shale,radial fractures noticeably deflect along the bedding surface.Vertical bedding facilitates the development of transverse fractures oriented parallel to the cross-section.Bifurcation-merging of explosioninduced fractures generated CGF.CGF mass and fractal dimension increase,while average particle size decreases with increasing explosion load.This study provides valuable insights into MISEF technology.
基金Project 50504015 supported by the National Natural Science Foundation of Chinathe Youth Science and Technology Research Program of China University of Mining and Technology (0C060996)
文摘Single-phase low current grounding faults areoften seen in power distribution system of coal mines.These faults are difficult to reliably identify.We propose a new method of single-phase ground fault protection based upon a discernible matrix of the fractal dimension associated with line currents.The method builds on existing selective protection methods.Faulted feeders are distinguished using differences in the zero-sequence transient current fractal dimension.The current signals were first processed through a fast Fourier transform and then the characteristics of a faulted line were identified using a discernible matrix.The method of calculation is illustrated.The results show that the method involves simple calculations, is easy to do and is highly accurate.It is, therefore, suitable for distribution networks having different neutral grounding modes.
文摘Fractal geometry is a potential new approach to analyze the root architecture, which may offer improved ways to quantify and summarize root system complexity as well as yield ecological and physiological insights into the functional relevance of specific architectural patterns. Fractal analysis is a sensitive measure of root branching intensity and fractal dimension expresses the "space filling" properties of a structure. The objective of this study was to find out the fractal characteristics of root systems in a remote area of the Taklimakan desert in China. The entire root system of two naturally occurring species were excavated and exposed with shov- els in 2007. The species were Tamarix taklamakanensis and Calligonum roborovskii. A one-factorial ANOVA with species as factor showed statistically a highly significant difference in fractal dimensions, indicating differences in their pattern of root branching. There was no relationship between root diameter and two parameters of fractal root models a and q, representing general characteris- tics of root systems, for either species (a: the ratio of the sum of root cross-sectional areas after a branching to the cross-sectional area before root division; q: the distribution of the cross-sectional areas after branching). We have found significant linear relation- ships between the diameter after branching and root length and biomass respectively, because of the self-similarity of root branching. Branching rules are the same for roots of all sizes and lengths. Root biomass for the root systems of entire trees can be estimated by measuring the diameter of each root at the base of the trunk or the diameter after branching. We have shown that the diameter of each root at the base of the trunk and the diameter after branching are effective indices that can be measured easily in order to estimate the root lengths, biomass and other parameters of root architecture.
基金supported by the National Natural Science Foundation of China(Grant Nos.61262040,61271341,81360230,and 61271007)the Applied Basic Research Projects of Yunnan Province,China(Grant No.KKSY201203062)
文摘Image texture feature extraction is a classical means for biometric recognition. To extract effective texture feature for matching, we utilize local fractal auto-correlation to construct an effective image texture descriptor. Three main steps are involved in the proposed scheme: (i) using two-dimensional Gabor filter to extract the texture features of biometric images; (ii) calculating the local fractal dimension of Gabor feature under different orientations and scales using fractal auto-correlation algorithm; and (iii) linking the local fractal dimension of Gabor feature under different orientations and scales into a big vector for matching. Experiments and analyses show our proposed scheme is an efficient biometric feature extraction approach.
基金supported by the National Key Basic Research Program (No. 2010CB226800)the Innovation Team Development Program of the Ministry of Education (No. IRT0656)the Fundamental Research Funds for the Central Universities (No. 2010YL14)
文摘True triaxial rockburst experiments with four different unloading rates were performed on four prism specimens of granite sampled from Beishan, China. The damage evolution in the rockburst test was investigated from two aspects including fracture surface crack and fragment characteristics. The scanning electron microscopy was used to observe the micro crack information on fragment surface. Combing binarization and box counting dimensions, the fractal dimensions of cracks were obtained. Meanwhile,the fragments were collected and a sieving experiment was conducted. We weighed the fragments qualities, counted the amount of fragments and measured the fragments length, width and thickness.Utilizing four methods to calculate damage fractal dimensions of fragments, the trend of fractal value changing with unloading rates can be roughly described. It can be concluded from these experiments that the fractal dimension either for crack or for fragment holds a decreasing trend with the decreasing unloading rate, indicating a reduction of damage level.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.51776037 and 51806147)Natural Science Foundation of Jiangsu Province,China(Grant No.BK20170082).
文摘The fractal Brownian motion is utilized to describe pore structures in porous media. A numerical model of laminar flow in porous media is developed, and the flow characteristics are comprehensively analyzed and compared with those of homogeneous porous media. Moreover, the roles of the fractal dimension and porosity in permeability are quantitatively described. The results indicate that the pore structures of porous media significantly affect their seepage behaviors. The distributions of pressure and velocity in fractal porous media are both non-uniform;the streamline is no longer straight but tortuous. When Reynolds number Re < 1, the dimensionless permeability is independent of Reynolds number, but its further increase will lead to a smaller permeability. Moreover, due to the higher connectivity and enlarged equivalent aperture of internal channel network, the augment in porosity leads to the permeability enhancement, while it is small and insensitive to porosity variation when ε < 0.6. Fractal dimension also plays a significant role in the permeability of porous media. The increase in fractal dimension leads to the enhancement in pore connectivity and a decrease in channel tortuosity,which reduces the flow resistance and improves the transport capacity of porous media.
基金the National Natural Science Foundation of China (Nos. 50904067 and 51104156)the New Century Excellent Talents in University (No. NCET-10-0768) for their support of this project
文摘In this paper, simulated experiment device of coal and gas outburst was employed to perform the experiment on gas-containing coal extrusion. In the experiment, coal surface cracks were observed with a high-speed camera and then the images were processed by sketch. Based on the above description, the paper studied the fractal dimension values from different positions of coal surface as well as their changing laws with time. The results show that there is a growing parabola trend of crack dimension value in the process of coal extrusion. Accordingly, we drew the conclusion that extruded coal crack evolution is a process of fractal dimension value increase. On the basis of fractal dimension values taken from different parts of coal masses, a fractal dimension of the contour map was drawn. Thus, it is clear that the contour map involves different crack fractal dimension values from different positions. To be specific, where there are complicated force and violent movement in coal mass, there are higher fractal dimension values, i.e., the further the middle of observation surface is from the exit of coal mass, and the lower the fractal dimension value is. In line with fractal geometry and energy theory of coal and gas outburst, this study presents the relation between fractal dimension and energy in the process of extruding. In conclusion, the evolution of crack fractal dimension value can signify that of energy, which has laid a solid foundation for the quantification research on the mechanism of gas-containing coal extrusion.
文摘CeO2/ZnO nanocatalysts were prepared from the coupling route of homogeneous precipita-tion with microemulsion and the impregnation method. The catalytic performance of these two kinds of catalysts on the oxidative coupling of methane with carbon dioxide was tested and compared; the frac-tal behavior of the nanocatalysts was analyzed using fractal theory. The CeO2/ZnO nanocatalysts had much higher activity than the catalysts prepared by impregnation method. There was no regular relation-ship between the average size of CeO2/ZnO nanocatalysts and their catalytic performance; however, the conversion of methane increased with the increase of the fractal dimension of CeO2/ZnO nanocatalysts.
基金funded by the Gates Cambridge Trust at Cambridge University
文摘A study was conducted at Msekera Regional Agricultural Research Station in eastern Zambia to (1) describe canopy branching properties of Acacia angustissima, Gliricidia sepium and Leucaena collinsii in short rotation forests, (2) test the existence of self similarity from repeated iteration of a structural unit in tree canopies, (3) examined intra-specifie relationships between functional branching characteristics, and (4) determine whether allometric equations for relating aboveground tree biomass to fractal properties could accurately predict aboveground biomass. Measurements of basal diameter (Din0) at 10em aboveground and total height (H), and aboveground biomass of 27 trees were taken, but only nine trees representative of variability of the stand and the three species were processed for functional branching analyses (FBA) of the shoot systems. For each species, fractal properties of three trees, includ- ing fractal dimension (Dfract), bifurcation ratios (p) and proportionality ratios (q) of branching points were assessed. The slope of the linear re- gression ofp on proximal diameter was not significantly different (P 〈 0.01) from zero and hence the assumption that p is independent of scale, a pre-requisite for use of fraetal branching rules to describe a fraetal tree canopy, was fulfilled at branching orders with link diameters 〉1.5 cm. The proportionality ration q for branching patterns of all tree species was constant at all scales. The proportion of q values 〉0.9 (fq) was 0.8 for all species. Mean fraetal dimension (Df^ct) values (1.5-1.7) for all species showed that branching patterns had an increasing magnitude of intricacy. Since Dfraet values were 〉1.5, branching patterns within species were self similar. Basal diameter (D10), proximal diameter and Dfraet described most of variations in aboveground biomass, suggesting that allometric equa- tions for relating aboveground tree biomass to fractal properties could accurately predict aboveground biomass. Thus, assessed Acacia, Gliri- cidia and Leucaena trees were fractals and their branching propertiescould be used to describe variability in size and aboveground biomass.
文摘The paper discusses the fundamental conceptions and properties of fractal geometry.The definitions of fractal dimension are described and the mathods of calculating fractal dimension are introduced. The paper researches the peculiarities of fault diagnosis for logging truck engine and puts forward the technical way of diagnosing the faults with the help of the fractal geometry.
文摘This paper analyzes the possibility to discriminate between convective precipitation and stratiform precipitation. This study aims to improve the measurement of rainfall from teledetection data obtained both on the ground and in space. For this, two parameters, fractal dimension and fractal lacunarity, are considered. To calculate the fractal dimension, we use the approach of box-counting and show that the fractal dimension differs between convectives cells and stratiforms ones. And then the fractal lacunarity parameter is calculated by using the sliding boxes algorithm. The study for all the regions shows that precipitation cells can be described by different lacunarities whatever the scale of analysis. We deduce that the two parameters, fractal dimension and fractal lacunarity, can be used to classify precipitations in convective regime and stratiform regime.
文摘Internal wood surfaces can be treated as fractals, which are between Euclidean geometry and complete randomness. The fractal dimension Dfs is very informative in investigating the roughness of the internal surfaces of wood. In this study, the water sorption isotherms, including adsorption and desorption isotherm, of untreated, benzene-alcohol extracted and delignified (after benzene-alcohol extracted) spruce (Cuninghamia lanceolata) were measured at 30℃. On the basis of these isotherms, the Dfs values were calculated by FHH equation, which is based on multimolecular sorption. The results showed that both groups of Dfs values (respectively calculated from adsorption and desorption isotherms) of untreated, benzene-alcohol extracted and delignified wood have same order, that is, untreated > benzene-alcohol extracted - delignified. Therefore, the conclusion can be made that the benzene-alcohol extractives have significant contribution to the fractal geometry of internal wood surfaces. Lignin also has influence on the fractal geometry, but this influence is very small while compared with that of the extractives. Moreover, the Dfs values calculated from adsorption isotherms are bigger than those from desorption isotherms.