期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
2
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
(3+1)维时间分数阶KdV-Zakharov-Kuznetsov方程的分支分析及其行波解
被引量:
5
1
作者
张雪
孙峪怀
《应用数学和力学》
CSCD
北大核心
2019年第12期1345-1355,共11页
首先,运用拟设方法和动力系统分支方法,获得了(3+1)维时间分数阶KdV-Zakharov-Kuznetsov方程的奇异孤子解、亮孤子解、拓扑孤子解、周期爆破波解、孤立波解等.再利用MAPLE软件画出了KdV-Zakharov-Kuznetsov方程在不同条件下的分支相图....
首先,运用拟设方法和动力系统分支方法,获得了(3+1)维时间分数阶KdV-Zakharov-Kuznetsov方程的奇异孤子解、亮孤子解、拓扑孤子解、周期爆破波解、孤立波解等.再利用MAPLE软件画出了KdV-Zakharov-Kuznetsov方程在不同条件下的分支相图.最后,讨论了行波解之间的联系.
展开更多
关键词
(3+1)
维
时间
分数
阶
kdv-zakharov-kuznetsov
方程
拟设方法
分支方法
分支相图
行波解
在线阅读
下载PDF
职称材料
二维时间分数阶扩散方程的Hermite型矩形元的超收敛分析
2
作者
王萍莉
牛裕琪
+2 位作者
赵艳敏
王芬玲
史艳华
《应用数学》
CSCD
北大核心
2019年第3期651-658,共8页
基于经典的L1逼近,针对二维时间分数阶扩散方程给出Hermite型矩形元的全离散格式.首先,证明其逼近格式的无条件稳定性.其次,基于Hermite型矩形元的积分恒等式结果,建立插值与Ritz投影之间在H 1模意义下的超收敛估计.进而,通过利用插值...
基于经典的L1逼近,针对二维时间分数阶扩散方程给出Hermite型矩形元的全离散格式.首先,证明其逼近格式的无条件稳定性.其次,基于Hermite型矩形元的积分恒等式结果,建立插值与Ritz投影之间在H 1模意义下的超收敛估计.进而,通过利用插值与投影的关系及巧妙地处理分数阶导数,得到单独利用插值或Ritz投影所无法得到的超逼近及超收敛结果.最后,借助于插值后处理技术导出了整体超收敛结果.
展开更多
关键词
二
维
时间
分数
阶
扩散
方程
Hermite型矩形元
L
1
逼近
超逼近及超收敛
在线阅读
下载PDF
职称材料
题名
(3+1)维时间分数阶KdV-Zakharov-Kuznetsov方程的分支分析及其行波解
被引量:
5
1
作者
张雪
孙峪怀
机构
西南交通大学希望学院
四川师范大学数学科学学院
出处
《应用数学和力学》
CSCD
北大核心
2019年第12期1345-1355,共11页
基金
国家自然科学基金(11371267)
四川省自然科学重点基金(2012ZA135)~~
文摘
首先,运用拟设方法和动力系统分支方法,获得了(3+1)维时间分数阶KdV-Zakharov-Kuznetsov方程的奇异孤子解、亮孤子解、拓扑孤子解、周期爆破波解、孤立波解等.再利用MAPLE软件画出了KdV-Zakharov-Kuznetsov方程在不同条件下的分支相图.最后,讨论了行波解之间的联系.
关键词
(3+1)
维
时间
分数
阶
kdv-zakharov-kuznetsov
方程
拟设方法
分支方法
分支相图
行波解
Keywords
(
3
+1)-dimensional time fractional
kdv-zakharov-kuznetsov
equation
ansatz method
bifurcation analysis
phase portrait
分类号
O175.29 [理学—基础数学]
在线阅读
下载PDF
职称材料
题名
二维时间分数阶扩散方程的Hermite型矩形元的超收敛分析
2
作者
王萍莉
牛裕琪
赵艳敏
王芬玲
史艳华
机构
许昌学院数学与统计学院
出处
《应用数学》
CSCD
北大核心
2019年第3期651-658,共8页
基金
河南省教育厅项目(17A110011)
河南省高等学校重点科研项目(19B110013)
许昌市基础与前沿研究项目(1504001,19)
文摘
基于经典的L1逼近,针对二维时间分数阶扩散方程给出Hermite型矩形元的全离散格式.首先,证明其逼近格式的无条件稳定性.其次,基于Hermite型矩形元的积分恒等式结果,建立插值与Ritz投影之间在H 1模意义下的超收敛估计.进而,通过利用插值与投影的关系及巧妙地处理分数阶导数,得到单独利用插值或Ritz投影所无法得到的超逼近及超收敛结果.最后,借助于插值后处理技术导出了整体超收敛结果.
关键词
二
维
时间
分数
阶
扩散
方程
Hermite型矩形元
L
1
逼近
超逼近及超收敛
Keywords
Two-dimensional time fractional diffusion equation
Hermite-type rectangular element
L
1
approximation
Superclose and superconvergence
分类号
O212.21 [理学—概率论与数理统计]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
(3+1)维时间分数阶KdV-Zakharov-Kuznetsov方程的分支分析及其行波解
张雪
孙峪怀
《应用数学和力学》
CSCD
北大核心
2019
5
在线阅读
下载PDF
职称材料
2
二维时间分数阶扩散方程的Hermite型矩形元的超收敛分析
王萍莉
牛裕琪
赵艳敏
王芬玲
史艳华
《应用数学》
CSCD
北大核心
2019
0
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部