目的直接动脉血压(arterial blood pressure,ABP)连续监测是侵入式的,传统袖带式的间接血压测量法无法实现连续监测。既往利用光学体积描记术(photoplethysmography,PPG)实现了连续无创血压监测,但其为收缩压和舒张压的离散值,而非ABP...目的直接动脉血压(arterial blood pressure,ABP)连续监测是侵入式的,传统袖带式的间接血压测量法无法实现连续监测。既往利用光学体积描记术(photoplethysmography,PPG)实现了连续无创血压监测,但其为收缩压和舒张压的离散值,而非ABP波的连续值,本研究期望基于卷积神经网络-长短期记忆神经网络(CNN-LSTM)利用PPG信号波重建ABP波信号,实现连续无创血压监测。方法构建CNN-LSTM混合神经网络模型,利用重症监护医学信息集(medical information mart for intensive care,MIMIC)中的PPG与ABP波同步记录信号数据,将PPG信号波经预处理降噪、归一化、滑窗分割后输入该模型,重建与之同步对应的ABP波信号。结果使用窗口长度312的CNN-LSTM神经网络时,重建ABP值与实际ABP值间误差最小,平均绝对误差(mean absolute error,MAE)和均方根误差(root mean square error,RMSE)分别为2.79 mmHg和4.24 mmHg,余弦相似度最大,重建ABP值与实际ABP值一致性和相关性情况良好,符合美国医疗器械促进协会(Association for the Advancement of Medical Instrumentation,AAMI)标准。结论CNN-LSTM混合神经网络可利用PPG信号波重建ABP波信号,实现连续无创血压监测。展开更多
大量工程应用问题可建模为结构化非线性规划,且这类问题的系数矩阵可分为稀疏型和稠密型两种类型.利用原始-对偶内点法(primal dual interior point method,PD-IPM),并结合分布式并行技术可高效求解此类问题.经典工程问题-机组组合(unit...大量工程应用问题可建模为结构化非线性规划,且这类问题的系数矩阵可分为稀疏型和稠密型两种类型.利用原始-对偶内点法(primal dual interior point method,PD-IPM),并结合分布式并行技术可高效求解此类问题.经典工程问题-机组组合(unit commitment,UC)为稀疏系数矩阵的结构化非线性规划,本文根据PD-IPM原理,对UC模型进行连续松弛预处理,结合快速解耦技术解耦牛顿修正方程并设计CPU-GPU协同并行算法求解子问题,最后将结果与带稠密型子问题的结构化非线性规划的求解结果进行比较和分析.实验结果显示,本文所设计的算法对于两种不同类型的结构化非线性规划求解均能获得较好的加速比.展开更多
针对输电线路巡检中无人机拍摄角度下器械易形变及带臂机械不同工作状态下特征复杂难以捕获的问题,提出一种基于阶梯式特征融合的外力破坏检测方法。该方法首先通过融合可变形大卷积核注意力网络提取无人机拍摄图像的特征信息;其次,利...针对输电线路巡检中无人机拍摄角度下器械易形变及带臂机械不同工作状态下特征复杂难以捕获的问题,提出一种基于阶梯式特征融合的外力破坏检测方法。该方法首先通过融合可变形大卷积核注意力网络提取无人机拍摄图像的特征信息;其次,利用多尺度序列特征融合模块进行阶梯式特征融合;然后,对检测头进行轻量化操作以减少参数量;最后,提出渐变完全交并比抑制(gradual complete intersection over union non-maximum suppression,GCIoU NMS)损失函数优化模型。在自建数据集上的实验表明,该方法的mAP50%和mAP50%-95%分别提高10.5和10.2百分点,达到86.8%和58.4%;在VOC数据集上,mAP50%和mAP50%-95%分别提高7.3和8.1百分点,达到79.5%和58.8%。实验结果表明,该方法有效提升了目标检测性能,对复杂环境下输电线路外部破坏检测具有重要参考价值。展开更多
知识可视化是在科学计算可视化、数据可视化、信息可视化基础上发展起来的新兴研究领域,它应用视觉表征手段促进群体知识的传播和创新。2004年7月,Martin J.Eppler和Remo A.Burkhard共同编写的工作文档Knowledge Visualization-Towards ...知识可视化是在科学计算可视化、数据可视化、信息可视化基础上发展起来的新兴研究领域,它应用视觉表征手段促进群体知识的传播和创新。2004年7月,Martin J.Eppler和Remo A.Burkhard共同编写的工作文档Knowledge Visualization-Towards a New Discipline and its Fields of Application发布,这标志着知识可视化正式成为一个新的研究领域。该文档正式给出了知识可视化的首个定义(以下简称2004定义),本文对该定义进行深入分析,并给出该定义的新的表述:"知识可视化是研究如何应用视觉表征改进两个或两个以上人之间复杂知识创造与传递的学科。"展开更多
文摘目的直接动脉血压(arterial blood pressure,ABP)连续监测是侵入式的,传统袖带式的间接血压测量法无法实现连续监测。既往利用光学体积描记术(photoplethysmography,PPG)实现了连续无创血压监测,但其为收缩压和舒张压的离散值,而非ABP波的连续值,本研究期望基于卷积神经网络-长短期记忆神经网络(CNN-LSTM)利用PPG信号波重建ABP波信号,实现连续无创血压监测。方法构建CNN-LSTM混合神经网络模型,利用重症监护医学信息集(medical information mart for intensive care,MIMIC)中的PPG与ABP波同步记录信号数据,将PPG信号波经预处理降噪、归一化、滑窗分割后输入该模型,重建与之同步对应的ABP波信号。结果使用窗口长度312的CNN-LSTM神经网络时,重建ABP值与实际ABP值间误差最小,平均绝对误差(mean absolute error,MAE)和均方根误差(root mean square error,RMSE)分别为2.79 mmHg和4.24 mmHg,余弦相似度最大,重建ABP值与实际ABP值一致性和相关性情况良好,符合美国医疗器械促进协会(Association for the Advancement of Medical Instrumentation,AAMI)标准。结论CNN-LSTM混合神经网络可利用PPG信号波重建ABP波信号,实现连续无创血压监测。
文摘针对输电线路巡检中无人机拍摄角度下器械易形变及带臂机械不同工作状态下特征复杂难以捕获的问题,提出一种基于阶梯式特征融合的外力破坏检测方法。该方法首先通过融合可变形大卷积核注意力网络提取无人机拍摄图像的特征信息;其次,利用多尺度序列特征融合模块进行阶梯式特征融合;然后,对检测头进行轻量化操作以减少参数量;最后,提出渐变完全交并比抑制(gradual complete intersection over union non-maximum suppression,GCIoU NMS)损失函数优化模型。在自建数据集上的实验表明,该方法的mAP50%和mAP50%-95%分别提高10.5和10.2百分点,达到86.8%和58.4%;在VOC数据集上,mAP50%和mAP50%-95%分别提高7.3和8.1百分点,达到79.5%和58.8%。实验结果表明,该方法有效提升了目标检测性能,对复杂环境下输电线路外部破坏检测具有重要参考价值。
文摘知识可视化是在科学计算可视化、数据可视化、信息可视化基础上发展起来的新兴研究领域,它应用视觉表征手段促进群体知识的传播和创新。2004年7月,Martin J.Eppler和Remo A.Burkhard共同编写的工作文档Knowledge Visualization-Towards a New Discipline and its Fields of Application发布,这标志着知识可视化正式成为一个新的研究领域。该文档正式给出了知识可视化的首个定义(以下简称2004定义),本文对该定义进行深入分析,并给出该定义的新的表述:"知识可视化是研究如何应用视觉表征改进两个或两个以上人之间复杂知识创造与传递的学科。"