处于改建阶段的智能变电站采样模式复杂,继电保护装置难以发现采样回路轻微异常,导致回路隐患暴露时间严重滞后。针对上述问题,分析改建时期智能变电站的采样模式和二次设备配置情况,提出基于同源录波数据比对的继电保护采样回路异常检...处于改建阶段的智能变电站采样模式复杂,继电保护装置难以发现采样回路轻微异常,导致回路隐患暴露时间严重滞后。针对上述问题,分析改建时期智能变电站的采样模式和二次设备配置情况,提出基于同源录波数据比对的继电保护采样回路异常检测方法。首先,利用双向编码器表征(bidirectional encoder representations from transformers,BERT)语言模型与余弦相似度算法,实现同源录波数据的通道匹配。然后,利用重采样技术和曼哈顿距离完成波形的采样频率统一与时域对齐。最后,基于动态时间规整(dynamic time warping,DTW)算法提出改进算法,并结合采样点偏移量共同设置采样回路的异常判据。算例分析表明,该方法可以完成录波数据的同源通道匹配,实现波形的一致性对齐,并且相比于传统DTW算法,改进DTW算法对异常状态识别的灵敏性和准确性更高。根据异常判据能够有效检测继电保护采样回路的异常状态,确保了智能变电站的安全可靠运行。展开更多
针对当前换流站一次设备温度监测中非接触式红外测温存在成本高、准确率低、时效性差等问题,提出一种面向高压场景的温度监控方案。该方案结合5G无源物联网(Passive Internet of Things,P-IoT)技术与Transformer模型。通过在高压设备关...针对当前换流站一次设备温度监测中非接触式红外测温存在成本高、准确率低、时效性差等问题,提出一种面向高压场景的温度监控方案。该方案结合5G无源物联网(Passive Internet of Things,P-IoT)技术与Transformer模型。通过在高压设备关键部位部署无源温度传感器,利用反向散射通信技术实现低功耗数据传输,并借助5G网络将数据传输至边缘服务器处理。随后,采用基于Transformer的异常检测模型,通过多头注意力机制有效捕捉温度数据中的时序特征,结合最大池化操作实现对异常温度的准确识别与预警。实验结果表明,该方案在高电磁干扰环境下的传输成功率达到99.0%,在温度异常检测任务中的精度、召回率和F1值分别为98.7%、97.5%和96.9%,显著优于LSTM和GRU等传统时序模型。研究成果验证了所提方法在复杂高压场景下的适用性和稳定性,可为后续在更高电压等级的特高压设备中推广应用奠定技术基础。展开更多
文摘处于改建阶段的智能变电站采样模式复杂,继电保护装置难以发现采样回路轻微异常,导致回路隐患暴露时间严重滞后。针对上述问题,分析改建时期智能变电站的采样模式和二次设备配置情况,提出基于同源录波数据比对的继电保护采样回路异常检测方法。首先,利用双向编码器表征(bidirectional encoder representations from transformers,BERT)语言模型与余弦相似度算法,实现同源录波数据的通道匹配。然后,利用重采样技术和曼哈顿距离完成波形的采样频率统一与时域对齐。最后,基于动态时间规整(dynamic time warping,DTW)算法提出改进算法,并结合采样点偏移量共同设置采样回路的异常判据。算例分析表明,该方法可以完成录波数据的同源通道匹配,实现波形的一致性对齐,并且相比于传统DTW算法,改进DTW算法对异常状态识别的灵敏性和准确性更高。根据异常判据能够有效检测继电保护采样回路的异常状态,确保了智能变电站的安全可靠运行。
文摘针对当前换流站一次设备温度监测中非接触式红外测温存在成本高、准确率低、时效性差等问题,提出一种面向高压场景的温度监控方案。该方案结合5G无源物联网(Passive Internet of Things,P-IoT)技术与Transformer模型。通过在高压设备关键部位部署无源温度传感器,利用反向散射通信技术实现低功耗数据传输,并借助5G网络将数据传输至边缘服务器处理。随后,采用基于Transformer的异常检测模型,通过多头注意力机制有效捕捉温度数据中的时序特征,结合最大池化操作实现对异常温度的准确识别与预警。实验结果表明,该方案在高电磁干扰环境下的传输成功率达到99.0%,在温度异常检测任务中的精度、召回率和F1值分别为98.7%、97.5%和96.9%,显著优于LSTM和GRU等传统时序模型。研究成果验证了所提方法在复杂高压场景下的适用性和稳定性,可为后续在更高电压等级的特高压设备中推广应用奠定技术基础。