InGaSb/AlGaAsSb double-quantum-well diode lasers emitting around 2 μm are demonstrated. The AlGaAsSb barriers of the lasers are grown with digital alloy techniques consisting of binary AlSb/AlAs/GaSb short-period pai...InGaSb/AlGaAsSb double-quantum-well diode lasers emitting around 2 μm are demonstrated. The AlGaAsSb barriers of the lasers are grown with digital alloy techniques consisting of binary AlSb/AlAs/GaSb short-period pairs. Peak power conversion efficiency of 26% and an efficiency higher than 16% at 1 W are achieved at continuous-wave operation for a 2-mm-long and 100-μm-wide stripe laser. The maximum output power of a single emitter reaches to 1.4 W at 7 A.19-emitter bars with maximum efficiency higher than 20% and maximum power of 16 W are fabricated. Lasers with the short-period-pair barriers are proved to have improved temperature properties and wavelength stabilities. The characteristic temperature(T_0) is up to 140?C near room temperature(25–55?C).展开更多
A very long wavelength infrared(VLWIR) focal plane array based on In As/Ga Sb type-Ⅱ super-lattices is demonstrated on a Ga Sb substrate. A hetero-structure photodiode was grown with a 50% cut-off wavelength of 15...A very long wavelength infrared(VLWIR) focal plane array based on In As/Ga Sb type-Ⅱ super-lattices is demonstrated on a Ga Sb substrate. A hetero-structure photodiode was grown with a 50% cut-off wavelength of 15.2 μm, at 77 K.A 320×256 VLWIR focal plane array with this design was fabricated and characterized. The peak quantum efficiency without an antireflective coating was 25.74% at the reverse bias voltage of-20 mV, yielding a peak specific detectivity of 5.89×10^10cm·Hz^1/2·W^-1. The operability and the uniformity of response were 89% and 83.17%. The noise-equivalent temperature difference at 65 K exhibited a minimum at 21.4 mK, corresponding to an average value of 56.3 mK.展开更多
The eight-band κ·p model is used to establish the energy band structure model of the type-II InAs/GaSb superlattice detectors with a cut-off wavelength of 10.5μm,and the best composition of M-structure in this ...The eight-band κ·p model is used to establish the energy band structure model of the type-II InAs/GaSb superlattice detectors with a cut-off wavelength of 10.5μm,and the best composition of M-structure in this type of device is calculated theoretically.In addition,we have also experimented on the devices designed with the best performance to investigate the effect of the active region p-type doping temperature on the quantum efficiency of the device.The results show that the modest active region doping temperature(Be:760℃)can improve the quantum efficiency of the device with the best performance,while excessive doping(Be:>760℃)is not conducive to improving the photo response.With the best designed structure and an appropriate doping concentration,a maximum quantum efficiency of 45% is achieved with a resistance-area product of 688?·cm^2,corresponding to a maximum detectivity of 7.35×10^11cm·Hz^1/2/W.展开更多
We report a type-Ⅱ GaSb-based interband cascade laser operating a continuous wave at room temperature. The cascade region of interband cascade laser was designed using the ‘W' configuration of the active quantum...We report a type-Ⅱ GaSb-based interband cascade laser operating a continuous wave at room temperature. The cascade region of interband cascade laser was designed using the ‘W' configuration of the active quantum wells and the ‘Carrier Rebalancing' method in the electron injector. The devices were processed into narrow ridges and mounted epitaxial side down on a copper heat sink. The 25-μm-wide, 3-mm-long ridge without coated facets generated 41.4 mW of continuous wave output power at T = 15℃. And a low threshold current density of 267 A/cm^2 is achieved. The emission wavelength of the ICL is 3452.3 nm at 0.5 A.展开更多
A long-/long-wave dual-color detector with N-M-π-B-π-M-N structure was developed based on a type-Ⅱ InAs/GaSb superlattice. The saturated responsivity was achieved under low bias voltage for both channels. The devic...A long-/long-wave dual-color detector with N-M-π-B-π-M-N structure was developed based on a type-Ⅱ InAs/GaSb superlattice. The saturated responsivity was achieved under low bias voltage for both channels. The device could be operated as a single detector for sequential detection and showed high quantum efficiencies. The peak quantum efficiencies of long-wavelength infrared band-1(blue channel) and long-wavelength infrared band-2(red channel) were 44% at 6.3 μm under 20 mV and 57% at 9.1 μm under-60 mV, respectively. The optical performance for each channel was achieved using a 2 μm thickness absorber. Due to the high QE, the specific detectivities of the blue and red channels reached5.0×10^(11) cm·Hz^(1/2)/W at 6.8 μm and 3.1×10^(11) cm·Hz1^(1/2)/W at 9.1 μm, respectively, at 77 K.展开更多
A series of In Sb thin films were grown on Ga As substrates by molecular beam epitaxy(MBE).Ga Sb/Al In Sb is used as a compound buffer layer to release the strain caused by the lattice mismatch between the substrate a...A series of In Sb thin films were grown on Ga As substrates by molecular beam epitaxy(MBE).Ga Sb/Al In Sb is used as a compound buffer layer to release the strain caused by the lattice mismatch between the substrate and the epitaxial layer,so as to reduce the system defects.At the same time,the influence of different interface structures of Al In Sb on the surface morphology of buffer layer is explored.The propagation mechanism of defects with the growth of buffer layer is compared and analyzed.The relationship between the quality of In Sb thin films and the structure of buffer layer is summarized.Finally,the growth of high quality In Sb thin films is realized.展开更多
The etching and passivation processes of very long wavelength infrared(VLWIR)detector based on the InAs/GaSb/AlSb type-II superlattice have been studied.By studying the effect of each component in the citric acid solu...The etching and passivation processes of very long wavelength infrared(VLWIR)detector based on the InAs/GaSb/AlSb type-II superlattice have been studied.By studying the effect of each component in the citric acid solution(citric acid,phosphoric acid,hydrogen peroxide,deionized water),the best solution ratio is obtained.After comparing different passivation materials such as sulfide+SiO_(2),Al_(2)O_(3),Si_(3)N_(4) and SU8,it is found that SU8 passivation can reduce the dark current of the device to a greater degree.Combining this wet etching and SU8 passivation,the of VLWIR detector with a mesa diameter of 500μm is about 3.6Ω·cm^(2) at 77 K.展开更多
In this paper, high material quality Al_(0.4) In_(0.6) AsSb quaternary alloy on GaSb substrates is demonstrated. The quality of these epilayers is assessed using a high-resolution x-ray diffraction, Fourier transform ...In this paper, high material quality Al_(0.4) In_(0.6) AsSb quaternary alloy on GaSb substrates is demonstrated. The quality of these epilayers is assessed using a high-resolution x-ray diffraction, Fourier transform infrared(FTIR) spectrometer,and atomic force microscope(AFM). The x-ray diffraction exhibits high order satellite peaks with a measured period of 31.06 ?(theoretical value is 30.48 ?), the mismatch between the GaSb substrate and AlInAsSb achieves-162 arcsec,and the root-mean square(RMS) roughness for typical material growths has achieved around 1.6 ? over an area of 10 μm×10 μm. At room temperature, the photoluminescence(PL) spectrum shows a cutoff wavelength of 1.617 μm.展开更多
we report n Bn photodetectors based on In As0.91 Sb0.09 with a 100% cut-off wavelength of 4.75 μm at 300 K. The band of an n Bn detector is similar to that of a standard pin detector, but there is special wide bandga...we report n Bn photodetectors based on In As0.91 Sb0.09 with a 100% cut-off wavelength of 4.75 μm at 300 K. The band of an n Bn detector is similar to that of a standard pin detector, but there is special wide bandgap Al As0.08 Sb0.92 barrier layer in the n Bn detector, in which the depletion region of n Bn detector exists. The n Bn design has many advantages, such as low dark current and high quantum efficiency, because the n Bn design can suppress the generation–recombination(GR)current that is the main composition of standard pin detector dark current. The constant slope of the Arrhenius plot of J0–1/T indicates the absence of the generation–recombination dark current. We fabricate an n Bn detector with a quantum efficiency(QE) maximum of ~ 60% under-0.2-V bias voltage. The In As Sb n Bn detectors may be a competitive candidate for midwavelength infrared detector.展开更多
We compare the effect of InGaAs/GaAs strained-layer superlattice(SLS) with that of GaAs thick buffer layer(TBL)serving as a dislocation filter layer. The InGaAs/GaAs SLS is found to be more effective than GaAs TBL in ...We compare the effect of InGaAs/GaAs strained-layer superlattice(SLS) with that of GaAs thick buffer layer(TBL)serving as a dislocation filter layer. The InGaAs/GaAs SLS is found to be more effective than GaAs TBL in blocking the propagation of threading dislocations, which are generated at the interface between the GaAs buffer layer and the Si substrate. Through testing and analysis, we conclude that the weaker photoluminescence for quantum dots(QDs) on Si substrate is caused by the quality of capping In_(0.15)Ga_(0.85)As and upper GaAs. We also find that the periodic misfits at the interface are related to the initial stress release of GaAs islands, which guarantees that the upper layers are stress-free.展开更多
We report a GaSb-based type-I quantum well cascade diode laser emitting at nearly 2-μm wavelength.The recycling of carriers is realized by the gradient AlGaAsSb barrier and chirped GaSb/AlSb/InAs electron injector.Th...We report a GaSb-based type-I quantum well cascade diode laser emitting at nearly 2-μm wavelength.The recycling of carriers is realized by the gradient AlGaAsSb barrier and chirped GaSb/AlSb/InAs electron injector.The growth of quaternary digital alloy with a gradually changed composition by short-period superlattices is introduced in detail in this paper.And the quantum well cascade laser with 100-μm-wide,2-mm-long ridge generates an about continuous-wave output of 0.8 W at room temperature.The characteristic temperature T_(0) is estimated at above 60 K.展开更多
We compared the photoluminescence(PL)properties of Al In As Sb digital alloy samples with different periods grown on Ga Sb(001)substrates by molecular beam epitaxy.Temperature-dependent S-shape behavior is observed an...We compared the photoluminescence(PL)properties of Al In As Sb digital alloy samples with different periods grown on Ga Sb(001)substrates by molecular beam epitaxy.Temperature-dependent S-shape behavior is observed and explained using a thermally activated redistribution model within a Gaussian distribution of localized states.There are two different mechanisms for the origin of the PL intensity quenching for the Al In As Sb digital alloy.The high-temperature activation energy E_(1)is positively correlated with the interface thickness,whereas the low-temperature activation energy E_(2)is negatively correlated with the interface thickness.A quantitative high-angle annular dark-field scanning transmission electron microscopy(HAADF-STEM)study shows that the interface quality improves as the interface thickness increases.Our results confirm that E_(1)comes from carrier trapping at a state in the In Sb interface layer,while E_(2)originates from the exciton binding energy due to the roughness of the Al As interface layer.展开更多
By optimizing theⅤ/Ⅲbeam-equivalent pressure ratio,a high-quality InAs/GaSb type-Ⅱsuperlattice material for the long-wavelength infrared(LWIR)range is achieved by molecular beam epitaxy(MBE).High-resolution x-ray d...By optimizing theⅤ/Ⅲbeam-equivalent pressure ratio,a high-quality InAs/GaSb type-Ⅱsuperlattice material for the long-wavelength infrared(LWIR)range is achieved by molecular beam epitaxy(MBE).High-resolution x-ray diffraction(HRXRD),atomic force microscopy(AFM),and Fourier transform infrared(FTIR)spectrometer are used to characterize the material growth quality.The results show that the full width at half maximum(FWHM)of the superlattice zero-order diffraction peak,the mismatching of the superlattice zero-order diffraction peak between the substrate diffraction peaks,and the surface roughness get the best results when the beam-equivalent pressure(BEP)ratio reaches the optimal value,which are 28 arcsec,13 arcsec,and 1.63?,respectively.The intensity of the zero-order diffraction peak is strongest at the optimal value.The relative spectral response of the LWIR detector shows that it exhibits a 100%cut-off wavelength of 12.6μm at 77 K.High-quality epitaxial materials have laid a good foundation for preparing high-performance LWIR detector.展开更多
Here we report 1.3μm electrical injection lasers based on InAs/GaAs quantum dots(QDs)grown on a GaAs substrate,which can steadily work at 110-℃without visible degradation.The QD structure is designed by applying the...Here we report 1.3μm electrical injection lasers based on InAs/GaAs quantum dots(QDs)grown on a GaAs substrate,which can steadily work at 110-℃without visible degradation.The QD structure is designed by applying the Stranski-Krastanow growth mode in solid source molecular beam epitaxy.The density of InAs QDs in the active region is increased from 3.8×10^(10)cm^(-2)to 5.9×10^(10)cm^(-2).As regards laser performance,the maximum output power of devices with lowdensity QDs as the active region is 65 m W at room temperature,and that of devices with the high-density QDs is 103 mW.Meanwhile the output power of high-density devices is 131 mW under an injection current of 4 A at 110-℃.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61790580 and 61435012)the National Basic Research Program of China(Grant No.2014CB643903)the Scientific Instrument Developing Project of the Chinese Academy of Sciences(Grant No.YJKYYQ20170032)
文摘InGaSb/AlGaAsSb double-quantum-well diode lasers emitting around 2 μm are demonstrated. The AlGaAsSb barriers of the lasers are grown with digital alloy techniques consisting of binary AlSb/AlAs/GaSb short-period pairs. Peak power conversion efficiency of 26% and an efficiency higher than 16% at 1 W are achieved at continuous-wave operation for a 2-mm-long and 100-μm-wide stripe laser. The maximum output power of a single emitter reaches to 1.4 W at 7 A.19-emitter bars with maximum efficiency higher than 20% and maximum power of 16 W are fabricated. Lasers with the short-period-pair barriers are proved to have improved temperature properties and wavelength stabilities. The characteristic temperature(T_0) is up to 140?C near room temperature(25–55?C).
基金supported by the National Basic Research Program of China(Grant Nos.2013CB932904 and 2011CB922201)the National Special Funds for the Development of Major Research Equipment and Instruments,China(Grant No.2012YQ140005)the National Natural Science Foundation of China(Grant Nos.61274013,61290303,and 61306013)
文摘A very long wavelength infrared(VLWIR) focal plane array based on In As/Ga Sb type-Ⅱ super-lattices is demonstrated on a Ga Sb substrate. A hetero-structure photodiode was grown with a 50% cut-off wavelength of 15.2 μm, at 77 K.A 320×256 VLWIR focal plane array with this design was fabricated and characterized. The peak quantum efficiency without an antireflective coating was 25.74% at the reverse bias voltage of-20 mV, yielding a peak specific detectivity of 5.89×10^10cm·Hz^1/2·W^-1. The operability and the uniformity of response were 89% and 83.17%. The noise-equivalent temperature difference at 65 K exhibited a minimum at 21.4 mK, corresponding to an average value of 56.3 mK.
基金Project supported by the National Key Technology R&D Program of China(Grant No.2018YFA0209104)the Key R&D Program of Guangdong Province,China(Grant No.2018B030329001)the Major Program of the National Natural Science Foundation of China(Grant No.61790581)。
文摘The eight-band κ·p model is used to establish the energy band structure model of the type-II InAs/GaSb superlattice detectors with a cut-off wavelength of 10.5μm,and the best composition of M-structure in this type of device is calculated theoretically.In addition,we have also experimented on the devices designed with the best performance to investigate the effect of the active region p-type doping temperature on the quantum efficiency of the device.The results show that the modest active region doping temperature(Be:760℃)can improve the quantum efficiency of the device with the best performance,while excessive doping(Be:>760℃)is not conducive to improving the photo response.With the best designed structure and an appropriate doping concentration,a maximum quantum efficiency of 45% is achieved with a resistance-area product of 688?·cm^2,corresponding to a maximum detectivity of 7.35×10^11cm·Hz^1/2/W.
基金Project supported by the Major Program of the National Natural Science Foundation of China(Grant No.61790580)the National Natural Science Foundation of China(Grant No.61435012)the National Basic Research Program of China(Grant No.2014CB643903)
文摘We report a type-Ⅱ GaSb-based interband cascade laser operating a continuous wave at room temperature. The cascade region of interband cascade laser was designed using the ‘W' configuration of the active quantum wells and the ‘Carrier Rebalancing' method in the electron injector. The devices were processed into narrow ridges and mounted epitaxial side down on a copper heat sink. The 25-μm-wide, 3-mm-long ridge without coated facets generated 41.4 mW of continuous wave output power at T = 15℃. And a low threshold current density of 267 A/cm^2 is achieved. The emission wavelength of the ICL is 3452.3 nm at 0.5 A.
基金supported by the National Key Technology R&D Program of China(Grant Nos.2018YFA0209104 and 2016YFB0402403)
文摘A long-/long-wave dual-color detector with N-M-π-B-π-M-N structure was developed based on a type-Ⅱ InAs/GaSb superlattice. The saturated responsivity was achieved under low bias voltage for both channels. The device could be operated as a single detector for sequential detection and showed high quantum efficiencies. The peak quantum efficiencies of long-wavelength infrared band-1(blue channel) and long-wavelength infrared band-2(red channel) were 44% at 6.3 μm under 20 mV and 57% at 9.1 μm under-60 mV, respectively. The optical performance for each channel was achieved using a 2 μm thickness absorber. Due to the high QE, the specific detectivities of the blue and red channels reached5.0×10^(11) cm·Hz^(1/2)/W at 6.8 μm and 3.1×10^(11) cm·Hz1^(1/2)/W at 9.1 μm, respectively, at 77 K.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61774130,11474248,61790581,and 51973070)the Ph.D.Program Foundation of the Ministry of Education of China(Grant No.20105303120002)the National Key Technology Research and Development Program of China(Grant No.2018YFA0209101)。
文摘A series of In Sb thin films were grown on Ga As substrates by molecular beam epitaxy(MBE).Ga Sb/Al In Sb is used as a compound buffer layer to release the strain caused by the lattice mismatch between the substrate and the epitaxial layer,so as to reduce the system defects.At the same time,the influence of different interface structures of Al In Sb on the surface morphology of buffer layer is explored.The propagation mechanism of defects with the growth of buffer layer is compared and analyzed.The relationship between the quality of In Sb thin films and the structure of buffer layer is summarized.Finally,the growth of high quality In Sb thin films is realized.
基金supported by the National Basic Research Program of China(Grant Nos.2018YFA0209102 and 2019YFA070104)the National Natural Science Foundation of China(Grant Nos.61790581 and 61274013)the Key Research Program of the Chinese Academy of Sciences(Grant No.XDPB22)。
文摘The etching and passivation processes of very long wavelength infrared(VLWIR)detector based on the InAs/GaSb/AlSb type-II superlattice have been studied.By studying the effect of each component in the citric acid solution(citric acid,phosphoric acid,hydrogen peroxide,deionized water),the best solution ratio is obtained.After comparing different passivation materials such as sulfide+SiO_(2),Al_(2)O_(3),Si_(3)N_(4) and SU8,it is found that SU8 passivation can reduce the dark current of the device to a greater degree.Combining this wet etching and SU8 passivation,the of VLWIR detector with a mesa diameter of 500μm is about 3.6Ω·cm^(2) at 77 K.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61774130 11474248,61176127,61006085,61274013,and 61306013the Key Program for International Science and Technology Cooperation Projects of China(Grant No.2011DFA62380)the Ph.D. Programs Foundation of the Ministry of Education of China(Grant No.20105303120002)
文摘In this paper, high material quality Al_(0.4) In_(0.6) AsSb quaternary alloy on GaSb substrates is demonstrated. The quality of these epilayers is assessed using a high-resolution x-ray diffraction, Fourier transform infrared(FTIR) spectrometer,and atomic force microscope(AFM). The x-ray diffraction exhibits high order satellite peaks with a measured period of 31.06 ?(theoretical value is 30.48 ?), the mismatch between the GaSb substrate and AlInAsSb achieves-162 arcsec,and the root-mean square(RMS) roughness for typical material growths has achieved around 1.6 ? over an area of 10 μm×10 μm. At room temperature, the photoluminescence(PL) spectrum shows a cutoff wavelength of 1.617 μm.
基金National Key Technologies Research and Development Program of China(Grant No.2018YFA0209104)the Major Program of the National Natural Science Foundation of China(Grant No.61790581).
文摘we report n Bn photodetectors based on In As0.91 Sb0.09 with a 100% cut-off wavelength of 4.75 μm at 300 K. The band of an n Bn detector is similar to that of a standard pin detector, but there is special wide bandgap Al As0.08 Sb0.92 barrier layer in the n Bn detector, in which the depletion region of n Bn detector exists. The n Bn design has many advantages, such as low dark current and high quantum efficiency, because the n Bn design can suppress the generation–recombination(GR)current that is the main composition of standard pin detector dark current. The constant slope of the Arrhenius plot of J0–1/T indicates the absence of the generation–recombination dark current. We fabricate an n Bn detector with a quantum efficiency(QE) maximum of ~ 60% under-0.2-V bias voltage. The In As Sb n Bn detectors may be a competitive candidate for midwavelength infrared detector.
基金Project supported by the National Key Research and Development Program of China(Grant No.2018YFA0306101)the Scientific Instrument Developing Project of Chinese Academy of Sciences(Grant No.YJKYYQ20170032)the National Natural Science Foundation of China(Grant Nos.61790581,61435012,and 61505196)
文摘We compare the effect of InGaAs/GaAs strained-layer superlattice(SLS) with that of GaAs thick buffer layer(TBL)serving as a dislocation filter layer. The InGaAs/GaAs SLS is found to be more effective than GaAs TBL in blocking the propagation of threading dislocations, which are generated at the interface between the GaAs buffer layer and the Si substrate. Through testing and analysis, we conclude that the weaker photoluminescence for quantum dots(QDs) on Si substrate is caused by the quality of capping In_(0.15)Ga_(0.85)As and upper GaAs. We also find that the periodic misfits at the interface are related to the initial stress release of GaAs islands, which guarantees that the upper layers are stress-free.
基金Project supported by the Major Program of the National Natural Science Foundation of China(Grant No.61790581)the Key Area Research and Development Program of Guangdong Province,China(Grant No.2020B0303020001).
文摘We report a GaSb-based type-I quantum well cascade diode laser emitting at nearly 2-μm wavelength.The recycling of carriers is realized by the gradient AlGaAsSb barrier and chirped GaSb/AlSb/InAs electron injector.The growth of quaternary digital alloy with a gradually changed composition by short-period superlattices is introduced in detail in this paper.And the quantum well cascade laser with 100-μm-wide,2-mm-long ridge generates an about continuous-wave output of 0.8 W at room temperature.The characteristic temperature T_(0) is estimated at above 60 K.
基金Project supported by the National Key Technologies Research and Development Program of China(Grant Nos.2019YFA0705203,2019YFA070104,2018YFA0209102,and 2018YFA0209104)the Major Program of the National Natural Science Foundation of China(Grant Nos.61790581,62004189,and 61274013)+2 种基金the Aeronautical Science Foundation of China(Grant No.20182436004)the Key Research Program of the Chinese Academy of Sciences(Grant No.XDPB22)the Research Foundation for Advanced Talents of the Chinese Academy of Sciences(Grant No.E27RBB03)。
文摘We compared the photoluminescence(PL)properties of Al In As Sb digital alloy samples with different periods grown on Ga Sb(001)substrates by molecular beam epitaxy.Temperature-dependent S-shape behavior is observed and explained using a thermally activated redistribution model within a Gaussian distribution of localized states.There are two different mechanisms for the origin of the PL intensity quenching for the Al In As Sb digital alloy.The high-temperature activation energy E_(1)is positively correlated with the interface thickness,whereas the low-temperature activation energy E_(2)is negatively correlated with the interface thickness.A quantitative high-angle annular dark-field scanning transmission electron microscopy(HAADF-STEM)study shows that the interface quality improves as the interface thickness increases.Our results confirm that E_(1)comes from carrier trapping at a state in the In Sb interface layer,while E_(2)originates from the exciton binding energy due to the roughness of the Al As interface layer.
基金Project supported by the National Key Technology R&D Program of China(Grant Nos.2018YFA0209104,2018YFA0209102,2019YFA0705203,and2019YFA070104)the National Natural Science Foundation of China(Grant Nos.61790581,61274013,and 62004189)the Key Research Program of the Chinese Academy of Sciences(Grant No.XDPB22).
文摘By optimizing theⅤ/Ⅲbeam-equivalent pressure ratio,a high-quality InAs/GaSb type-Ⅱsuperlattice material for the long-wavelength infrared(LWIR)range is achieved by molecular beam epitaxy(MBE).High-resolution x-ray diffraction(HRXRD),atomic force microscopy(AFM),and Fourier transform infrared(FTIR)spectrometer are used to characterize the material growth quality.The results show that the full width at half maximum(FWHM)of the superlattice zero-order diffraction peak,the mismatching of the superlattice zero-order diffraction peak between the substrate diffraction peaks,and the surface roughness get the best results when the beam-equivalent pressure(BEP)ratio reaches the optimal value,which are 28 arcsec,13 arcsec,and 1.63?,respectively.The intensity of the zero-order diffraction peak is strongest at the optimal value.The relative spectral response of the LWIR detector shows that it exhibits a 100%cut-off wavelength of 12.6μm at 77 K.High-quality epitaxial materials have laid a good foundation for preparing high-performance LWIR detector.
基金the Science and Technology Program of Guangzhou(Grant No.202103030001)the KeyArea Research and Development Program of Guangdong Province(Grant No.2018B030329001)+8 种基金the National Natural Science Foundation of China(Grant Nos.62035017,61505196,and 62204238)the Scientific Instrument Developing Project of the Chinese Academy of Sciences(Grant No.YJKYYQ20170032)the Major Program of the National Natural Science Foundation of China(Grant Nos.61790580 and 61790581)the Chinese Academy of Sciences and Changchun City Science and Technology Innovation Cooperation Project(Grant No.21SH06)Jincheng Key Research and Development Project(Grant No.20210209)the Key R&D Program of Shanxi Province(Grant No.202102030201004)the R&D Program of Guangdong Province(Grant Nos.2018B030329001 and2020B0303020001)Shenzhen Technology Research Project(Grant No.JSGG20201102145200001)the National Key Technologies R&D Program of China(Grant No.2018YFA0306100)。
文摘Here we report 1.3μm electrical injection lasers based on InAs/GaAs quantum dots(QDs)grown on a GaAs substrate,which can steadily work at 110-℃without visible degradation.The QD structure is designed by applying the Stranski-Krastanow growth mode in solid source molecular beam epitaxy.The density of InAs QDs in the active region is increased from 3.8×10^(10)cm^(-2)to 5.9×10^(10)cm^(-2).As regards laser performance,the maximum output power of devices with lowdensity QDs as the active region is 65 m W at room temperature,and that of devices with the high-density QDs is 103 mW.Meanwhile the output power of high-density devices is 131 mW under an injection current of 4 A at 110-℃.