The rapid increase of the scale and the complexity of the controlled plants bring new challenges such as computing power and storage for conventional control systems.Cloud computing is concerned as a powerful solution...The rapid increase of the scale and the complexity of the controlled plants bring new challenges such as computing power and storage for conventional control systems.Cloud computing is concerned as a powerful solution to handle complex large-scale control missions by using sufficient computing resources.However,the computing ability enables more complex devices and more data to be involved and most of the data have not been fully utilized.Meanwhile,it is even impossible to obtain an accurate model of each device in the complex control systems for the model-based control algorithms.Therefore,motivated by the above reasons,we propose a data-driven predictive cloud control system.To achieve the proposed system,a practical data-driven predictive cloud control testbed is established and together a cloud-edge communication scheme is developed.Finally,the simulations and experiments demonstrate the effectiveness of the proposed system.展开更多
The design and performance analysis of networked control systems with random network delay in the forward channel is proposed, which are described in a state-space form. A new control scheme is used to overcome the ef...The design and performance analysis of networked control systems with random network delay in the forward channel is proposed, which are described in a state-space form. A new control scheme is used to overcome the effects of network transmission delay, which is termed networked predictive control (NPC). Furthermore, three different ways to choose control input are discussed and the performances are analyzed, respectively. Both real-time simulations and practical experiments show the effectiveness of the control scheme.展开更多
The industrial Internet of Things(IIoT)is a new indus-trial idea that combines the latest information and communica-tion technologies with the industrial economy.In this paper,a cloud control structure is designed for...The industrial Internet of Things(IIoT)is a new indus-trial idea that combines the latest information and communica-tion technologies with the industrial economy.In this paper,a cloud control structure is designed for IIoT in cloud-edge envi-ronment with three modes of 5G.For 5G based IIoT,the time sensitive network(TSN)service is introduced in transmission network.A 5G logical TSN bridge is designed to transport TSN streams over 5G framework to achieve end-to-end configuration.For a transmission control protocol(TCP)model with nonlinear disturbance,time delay and uncertainties,a robust adaptive fuzzy sliding mode controller(AFSMC)is given with control rule parameters.IIoT workflows are made up of a series of subtasks that are linked by the dependencies between sensor datasets and task flows.IIoT workflow scheduling is a non-deterministic polynomial(NP)-hard problem in cloud-edge environment.An adaptive and non-local-convergent particle swarm optimization(ANCPSO)is designed with nonlinear inertia weight to avoid falling into local optimum,which can reduce the makespan and cost dramatically.Simulation and experiments demonstrate that ANCPSO has better performances than other classical algo-rithms.展开更多
In a cloud-native era,the Kubernetes-based workflow engine enables workflow containerized execution through the inherent abilities of Kubernetes.However,when encountering continuous workflow requests and unexpected re...In a cloud-native era,the Kubernetes-based workflow engine enables workflow containerized execution through the inherent abilities of Kubernetes.However,when encountering continuous workflow requests and unexpected resource request spikes,the engine is limited to the current workflow load information for resource allocation,which lacks the agility and predictability of resource allocation,resulting in over and underprovisioning resources.This mechanism seriously hinders workflow execution efficiency and leads to high resource waste.To overcome these drawbacks,we propose an adaptive resource allocation scheme named adaptive resource allocation scheme(ARAS)for the Kubernetes-based workflow engines.Considering potential future workflow task requests within the current task pod’s lifecycle,the ARAS uses a resource scaling strategy to allocate resources in response to high-concurrency workflow scenarios.The ARAS offers resource discovery,resource evaluation,and allocation functionalities and serves as a key component for our tailored workflow engine(KubeAdaptor).By integrating the ARAS into KubeAdaptor for workflow containerized execution,we demonstrate the practical abilities of KubeAdaptor and the advantages of our ARAS.Compared with the baseline algorithm,experimental evaluation under three distinct workflow arrival patterns shows that ARAS gains time-saving of 9.8% to 40.92% in the average total duration of all workflows,time-saving of 26.4% to 79.86% in the average duration of individual workflow,and an increase of 1% to 16% in centrol processing unit(CPU)and memory resource usage rate.展开更多
With the rapid development of cloud computing and control theory, a new paradigm of networked control systems called cloud control systems is proposed to meet the requirements of large-scale and complex applications. ...With the rapid development of cloud computing and control theory, a new paradigm of networked control systems called cloud control systems is proposed to meet the requirements of large-scale and complex applications. Currently, cloud control systems are mainly built by using a centralized architecture. The centralized system is overly dependent on the central control plane and has huge challenges in large-scale heterogeneous node systems. In this paper, we propose a decentralized approach to establish cloud control systems by proposing a distributed point-to-point task routing method. A considerable number of tasks in the system will not rely on the central plane and will be directly routed to the target devices through the pointto-point routing method, which improves the horizontal scalability of the cloud control system. The point-to-point routing method directly gives a unique address to every task, making inter-task communication more efficient in a complex heterogeneous and busy cloud control systems. Finally, we experimentally demonstrate that the distributed point-to-point task routing approach is compatible against the state-of-the-art central systems in large-scale task situations.展开更多
In this paper, stochastic stabilization is investigated by max-plus algebra for a Markovian jump cloud control system with a reference signal. For the Markovian jump cloud control system, there exists framework adjust...In this paper, stochastic stabilization is investigated by max-plus algebra for a Markovian jump cloud control system with a reference signal. For the Markovian jump cloud control system, there exists framework adjustment whose evolution is satisfied with a Markov chain. Using max-plus algebra, a maxplus stochastic system is used to describe the Markovian jump cloud control system. A causal feedback matrix is obtained by exponential stability analysis for a causal feedback controller of the Markovian jump cloud control system. A sufficient condition is given to ensure existence on the causal feedback matrix of the causal feedback controller. Based on the causal feedback controller, stochastic stabilization in probability is analyzed for the Markovian jump cloud control system with a reference signal.Simulation results are given to show effectiveness of the causal feedback controller for the Markovian jump cloud control system.展开更多
In challenging situations,such as low illumination,rain,and background clutter,the stability of the thermal infrared(TIR)spectrum can help red,green,blue(RGB)visible spectrum to improve tracking performance.However,th...In challenging situations,such as low illumination,rain,and background clutter,the stability of the thermal infrared(TIR)spectrum can help red,green,blue(RGB)visible spectrum to improve tracking performance.However,the high-level image information and the modality-specific features have not been sufficiently studied.The proposed correlation filter uses the fused saliency content map to improve filter training and extracts different features of modalities.The fused content map is intro-duced into the spatial regularization term of correlation filter to highlight the training samples in the content region.Furthermore,the fused content map can avoid the incompleteness of the con-tent region caused by challenging situations.Additionally,differ-ent features are extracted according to the modality characteris-tics and are fused by the designed response-level fusion stra-tegy.The alternating direction method of multipliers(ADMM)algorithm is used to solve the tracker training efficiently.Experi-ments on the large-scale benchmark datasets show the effec-tiveness of the proposed tracker compared to the state-of-the-art traditional trackers and the deep learning based trackers.展开更多
This paper mainly focuses on stability analysis of the nonlinear active disturbance rejection control(ADRC)-based control system and its applicability to real world engineering problems.Firstly,the nonlinear ADRC(NLAD...This paper mainly focuses on stability analysis of the nonlinear active disturbance rejection control(ADRC)-based control system and its applicability to real world engineering problems.Firstly,the nonlinear ADRC(NLADRC)-based control system is transformed into a multi-input multi-output(MIMO)Lurie-like system,then sufficient condition for absolute stability based on linear matrix inequality(LMI)is proposed.Since the absolute stability is a kind of global stability,Lyapunov stability is further considered.The local asymptotical stability can be deter-mined by whether a matrix is Hurwitz or not.Using the inverted pendulum as an example,the proposed methods are verified by simulation and experiment,which show the valuable guidance for engineers to design and analyze the NL ADRC-based control system.展开更多
基金supported by the National Natural Science Foundation of China(61836001,62122014,62173036,62102022)。
文摘The rapid increase of the scale and the complexity of the controlled plants bring new challenges such as computing power and storage for conventional control systems.Cloud computing is concerned as a powerful solution to handle complex large-scale control missions by using sufficient computing resources.However,the computing ability enables more complex devices and more data to be involved and most of the data have not been fully utilized.Meanwhile,it is even impossible to obtain an accurate model of each device in the complex control systems for the model-based control algorithms.Therefore,motivated by the above reasons,we propose a data-driven predictive cloud control system.To achieve the proposed system,a practical data-driven predictive cloud control testbed is established and together a cloud-edge communication scheme is developed.Finally,the simulations and experiments demonstrate the effectiveness of the proposed system.
基金supported partly by the National Natural Science Foundation of China(60504020)the Program for New Century Excellent Talents in University(NCET-08-0047)the Excellent Young Scholars Research Fund of Beijing Institute of Technology(2008YS0104).
文摘The design and performance analysis of networked control systems with random network delay in the forward channel is proposed, which are described in a state-space form. A new control scheme is used to overcome the effects of network transmission delay, which is termed networked predictive control (NPC). Furthermore, three different ways to choose control input are discussed and the performances are analyzed, respectively. Both real-time simulations and practical experiments show the effectiveness of the control scheme.
文摘The industrial Internet of Things(IIoT)is a new indus-trial idea that combines the latest information and communica-tion technologies with the industrial economy.In this paper,a cloud control structure is designed for IIoT in cloud-edge envi-ronment with three modes of 5G.For 5G based IIoT,the time sensitive network(TSN)service is introduced in transmission network.A 5G logical TSN bridge is designed to transport TSN streams over 5G framework to achieve end-to-end configuration.For a transmission control protocol(TCP)model with nonlinear disturbance,time delay and uncertainties,a robust adaptive fuzzy sliding mode controller(AFSMC)is given with control rule parameters.IIoT workflows are made up of a series of subtasks that are linked by the dependencies between sensor datasets and task flows.IIoT workflow scheduling is a non-deterministic polynomial(NP)-hard problem in cloud-edge environment.An adaptive and non-local-convergent particle swarm optimization(ANCPSO)is designed with nonlinear inertia weight to avoid falling into local optimum,which can reduce the makespan and cost dramatically.Simulation and experiments demonstrate that ANCPSO has better performances than other classical algo-rithms.
基金supported by the National Natural Science Foundation of China(61873030,62002019).
文摘In a cloud-native era,the Kubernetes-based workflow engine enables workflow containerized execution through the inherent abilities of Kubernetes.However,when encountering continuous workflow requests and unexpected resource request spikes,the engine is limited to the current workflow load information for resource allocation,which lacks the agility and predictability of resource allocation,resulting in over and underprovisioning resources.This mechanism seriously hinders workflow execution efficiency and leads to high resource waste.To overcome these drawbacks,we propose an adaptive resource allocation scheme named adaptive resource allocation scheme(ARAS)for the Kubernetes-based workflow engines.Considering potential future workflow task requests within the current task pod’s lifecycle,the ARAS uses a resource scaling strategy to allocate resources in response to high-concurrency workflow scenarios.The ARAS offers resource discovery,resource evaluation,and allocation functionalities and serves as a key component for our tailored workflow engine(KubeAdaptor).By integrating the ARAS into KubeAdaptor for workflow containerized execution,we demonstrate the practical abilities of KubeAdaptor and the advantages of our ARAS.Compared with the baseline algorithm,experimental evaluation under three distinct workflow arrival patterns shows that ARAS gains time-saving of 9.8% to 40.92% in the average total duration of all workflows,time-saving of 26.4% to 79.86% in the average duration of individual workflow,and an increase of 1% to 16% in centrol processing unit(CPU)and memory resource usage rate.
基金supported by the National Key Research and Development Program of China (2018AAA0103203)the National Natural Science Foundation of China (62073036,61836001,62102022,62122014)the Beijing Natural Science Foundation of China (42020741)。
文摘With the rapid development of cloud computing and control theory, a new paradigm of networked control systems called cloud control systems is proposed to meet the requirements of large-scale and complex applications. Currently, cloud control systems are mainly built by using a centralized architecture. The centralized system is overly dependent on the central control plane and has huge challenges in large-scale heterogeneous node systems. In this paper, we propose a decentralized approach to establish cloud control systems by proposing a distributed point-to-point task routing method. A considerable number of tasks in the system will not rely on the central plane and will be directly routed to the target devices through the pointto-point routing method, which improves the horizontal scalability of the cloud control system. The point-to-point routing method directly gives a unique address to every task, making inter-task communication more efficient in a complex heterogeneous and busy cloud control systems. Finally, we experimentally demonstrate that the distributed point-to-point task routing approach is compatible against the state-of-the-art central systems in large-scale task situations.
基金supported by the National Natural Science Foundation of China (61973230)Tianjin Research Innovation Project for Postgraduate Students (2021YJSO2S03)。
文摘In this paper, stochastic stabilization is investigated by max-plus algebra for a Markovian jump cloud control system with a reference signal. For the Markovian jump cloud control system, there exists framework adjustment whose evolution is satisfied with a Markov chain. Using max-plus algebra, a maxplus stochastic system is used to describe the Markovian jump cloud control system. A causal feedback matrix is obtained by exponential stability analysis for a causal feedback controller of the Markovian jump cloud control system. A sufficient condition is given to ensure existence on the causal feedback matrix of the causal feedback controller. Based on the causal feedback controller, stochastic stabilization in probability is analyzed for the Markovian jump cloud control system with a reference signal.Simulation results are given to show effectiveness of the causal feedback controller for the Markovian jump cloud control system.
基金supported by the National Natural Science Foundation of China(62073036,62076031)Beijing Natural Science Foundation(4242049).
文摘In challenging situations,such as low illumination,rain,and background clutter,the stability of the thermal infrared(TIR)spectrum can help red,green,blue(RGB)visible spectrum to improve tracking performance.However,the high-level image information and the modality-specific features have not been sufficiently studied.The proposed correlation filter uses the fused saliency content map to improve filter training and extracts different features of modalities.The fused content map is intro-duced into the spatial regularization term of correlation filter to highlight the training samples in the content region.Furthermore,the fused content map can avoid the incompleteness of the con-tent region caused by challenging situations.Additionally,differ-ent features are extracted according to the modality characteris-tics and are fused by the designed response-level fusion stra-tegy.The alternating direction method of multipliers(ADMM)algorithm is used to solve the tracker training efficiently.Experi-ments on the large-scale benchmark datasets show the effec-tiveness of the proposed tracker compared to the state-of-the-art traditional trackers and the deep learning based trackers.
基金supported by the National Natural Science Foundation of China(61836001).
文摘This paper mainly focuses on stability analysis of the nonlinear active disturbance rejection control(ADRC)-based control system and its applicability to real world engineering problems.Firstly,the nonlinear ADRC(NLADRC)-based control system is transformed into a multi-input multi-output(MIMO)Lurie-like system,then sufficient condition for absolute stability based on linear matrix inequality(LMI)is proposed.Since the absolute stability is a kind of global stability,Lyapunov stability is further considered.The local asymptotical stability can be deter-mined by whether a matrix is Hurwitz or not.Using the inverted pendulum as an example,the proposed methods are verified by simulation and experiment,which show the valuable guidance for engineers to design and analyze the NL ADRC-based control system.