Urban vegetation plays a crucial role in regulating temperatures and heat waves in urban areas.However,the influence of vegetation coverage and its configuration on surface temperatures in different climate zones at a...Urban vegetation plays a crucial role in regulating temperatures and heat waves in urban areas.However,the influence of vegetation coverage and its configuration on surface temperatures in different climate zones at a national scale is unclear.To address this,we utilized high-resolution data to detect spatial patterns for 31 provincial capital cities in China.We integrated day and night surface temperatures to determine the influence of vegetative coverage and configuration on urban temperatures across different climate zones and city sizes.Our study revealed that a subtropical monsoon climate and medium-sized cities had the highest vegetative coverage and shape complexity.The best connectivity and agglomeration of vegetation were found in a temperate monsoon climate and large cities.In contrast,small cities,especially those under a temperate continental climate,had low vegetation coverage,high fragmentation,and weak agglomeration and connectivity.In addition,vegetative coverage had a negative impact on daytime surface temperatures,especially in large cities in a subtropical monsoon climate.However,an increase in vegetation coverage could result in warming at night in small cities in temperate continental climates.Although urban vegetation configuration also contributed to moderating surface temperatures,especially at night,they did not surpass the influence of vegetation coverage.The effect on nighttime temperatures of the configuration of vegetation increased by 3–6%relative to that of daytime temperatures,especially in large cities in a temperate monsoon climate.The contribution vegetation coverage and configuration interaction to cooling efficiency decreased at night,especially in medium-sized cities in a temperate continental climate by 3–5%.In addition,this study identified several moderating effects of natural and social factors on the relationship between urban vegetation coverage and surface temperatures.High duration of sunshine,low humidity and high wind speed significantly enhanced the negative impact of vegetation coverage on surface temperatures.In addition,the moderating effect of vegetation coverage was more pronounced in low population density cities and high gross domestic product.This study enhances understanding of the ecological functions of urban vegetation and provides a valuable scientific basis and strategic recommendations for optimizing urban vegetation and improving urban environmental quality.展开更多
To meet the growing emission of water contaminants,the development of new materials that enhance the efficiency of the water treatment system is urgent.Ordered mesoporous materials provide opportunities in environment...To meet the growing emission of water contaminants,the development of new materials that enhance the efficiency of the water treatment system is urgent.Ordered mesoporous materials provide opportunities in environmental processing applications due to their exceptionally high surface areas,large pore sizes,and enough pore volumes.These properties might enhance the performance of materials concerning adsorption/catalysis capability,durability,and stability.In this review,we enumerate the ordered mesoporous materials as adsorbents/catalysts and their modifications in water pollution treatment from the past decade,including heavy metals(Hg^(2+),Pb^(2+),Cd^(2+),Cr^(6+),etc.),toxic anions(nitrate,phosphate,fluoride,etc.),and organic contaminants(organic dyes,antibiotics,etc.).These contributions demonstrate a deep understanding of the synergistic effect between the incorporated framework and homogeneous active centers.Besides,the challenges and perspectives of the future developments of ordered mesoporous materials in wastewater treatment are proposed.This work provides a theoretical basis and complete summary for the application of ordered mesoporous materials in the removal of contaminants from aqueous solutions.展开更多
Electroreduction of nitrate has been gaining wide attention in recent years owing to it's beneficial for converting nitrate into benign N_(2) from the perspective of electrocatalytic denitrification or into value-...Electroreduction of nitrate has been gaining wide attention in recent years owing to it's beneficial for converting nitrate into benign N_(2) from the perspective of electrocatalytic denitrification or into value-added ammonia from the perspective of electrocatalytic NH_(3) synthesis.By reason of the undesired formation of ammonia is dominant during electroreduction of nitrate-containing wastewater,chloride has been widely used to improve N_(2) selectivity.Nevertheless,selective electroreduction of nitrate to N2 gas in chloride-containing system poses several drawbacks.In this review,we focus on the key strategies for efficiently enhancing N_(2) selectivity of electroreduction of nitrate in chloride-free system,including optimal selection of elements,combining an active metal catalyst with another metal,manipulating the crystalline morphology and facet orientation,constructing core–shell structure catalysts,etc.Before summarizing the strategies,four possible reaction pathways of electro-reduction of nitrate to N_(2) are discussed.Overall,this review attempts to provide practical strategies for enhancing N2 selectivity without the aid of electrochlorination and highlight directions for future research for designing appropriate electrocatalyst for final electrocatalytic denitrifi-cation.展开更多
Global warming and frequent extreme drought events lead to tree death and extensive forest decline,but the underlying mechanism is not clear.In drought years,cambial development is more sensitive to climate change,but...Global warming and frequent extreme drought events lead to tree death and extensive forest decline,but the underlying mechanism is not clear.In drought years,cambial development is more sensitive to climate change,but in different phenological stages,the response rela-tionship is nonlinear.Therefore,the dynamic relationship between tree radial growth and climatic/environmental fac-tors needs to be studied.We thus continuously monitored radial growth of Qinghai spruce(Picea crassifolia Kom.)and environmental factors from January 2021 to November 2022 using point dendrometers and portable meteorological weather stations in the central area of the Qilian Mountains.The relationship and stability between the radial growth of Qinghai spruce and environmental factors were compared for different levels of drought in 2021 and 2022.The year 2022 had higher temperatures and less precipitation and was drier than 2021.Compared with 2021,the growing period in 2022 for Qinghai spruce was 10 days shorter,maximum growth rate(Grmax)was 4.5μm·d^(-1) slower,and the initiation of growth was 6 days later.Growth of Qinghai spruce was always restricted by drought,and the stem radial increment(SRI)was more sensitive to precipitation and air relative humidity.Seasonal changes in cumulative radial growth were divided into four phenological stages according to the time of growth onset,cessation,and maximum growth rate(Grmax)of Qinghai spruce.Stability responses of SRI to climate change were stronger in Stage 3 and Stage 4 of 2021 and stronger in Stage 1(initiation growth stage)and Stage 3 of 2022.The results provide important information on the growth of the trees in response to drought and for specific managing forests as the climate warms.展开更多
Two allyldimethylalkyl quaternary ammonium salt(AQAS)monomers,N,N-dimethylallylphenylpropylammonium bromide(AQAS1)and N,N-dimethylallylnonylammonium bromide(AQAS2),were synthesized and used to prepare modified polyacr...Two allyldimethylalkyl quaternary ammonium salt(AQAS)monomers,N,N-dimethylallylphenylpropylammonium bromide(AQAS1)and N,N-dimethylallylnonylammonium bromide(AQAS2),were synthesized and used to prepare modified polyacrylamide materials.Two new drag reducers were synthesized from acrylamide(AM),sodium acrylate(Na AA)and a cationic modified monomer(AQAS1 or AQAS2)via aqueous solution polymerization,and the copolymers were named P(AM/Na AA/AQAS1)and P(AM/Na AA/AQAS2),respectively.The structures of the drag reduction agents were confirmed by IR and1H NMR spectroscopies.The molecular weight(Mw)of P(AM/Na AA/AQAS1)was 1.79×10^(6)g/mol.When the copolymer concentration was 1000 mg/L and the flow rate was 45 L/min,in fresh water the highest drag reduction rate was 75.8%,in 10,000 mg/L Na Cl solution the drag reduction rate decreased to 72.9%.The molecular weight of P(AM/Na AA/AQAS2)was 3.17×10^(6)g/mol.When the copolymer concentration was500 mg/L and the flow rate was 45 L/min,the drag reduction rate reached 75.2%,and in 10,000 mg/L Na Cl solution the drag reduction rate was 73.3%,decreased by approximately 1.9%.The drag reduction rate for partially hydrolyzed polyacrylamide(HPAM)was also investigated,and the results showed that the drag reduction rates for 500 and 1000 mg/L HPAM solutions were merely 43.2%and 49.0%in brine,respectively.Compared with HPAM,both of the above copolymers presented better drag reduction capacities.展开更多
Light alkanes non-oxidative dehydrogenation is an attractive non-oil route for olefins production.The alkane dehydrogenation reaction is limited by thermodynamic equilibrium,and the C-H bond cleavage is commonly consi...Light alkanes non-oxidative dehydrogenation is an attractive non-oil route for olefins production.The alkane dehydrogenation reaction is limited by thermodynamic equilibrium,and the C-H bond cleavage is commonly considered as the rate-determined step.The valence state of metal sites in catalysts will influence the stabilization of the vital intermediate(i.e.,C_(x)H_(y)...M^(δ+)...H)during the C-H bond cleavage process,which in turn affects the catalytic reactivity.Herein,we explicitly investigated the effect of different valence states of framework-Fe in silicate-1 zeolite on ethane dehydrogenation reaction through the combination of experimental and theoretical study.Fe(Ⅱ)-S-1 and Fe(Ⅲ)-S-1 catalysts are successfully synthesized by ligand-assisted in situ crystallization method,In-situ C_(2)H_6-FTIR shows the higher coverage of hydrocarbon intermediates on Fe(Ⅱ)-S-1,Under the same evaluation co nditio n,Fe(Ⅱ)-S-1 exhibits a higher space time yield of ethylene.Density functional theory(DFT)results reveal that the more coordinate-unsaturated and electron-enriched Fe(Ⅱ)sites boost the first C-H bond activation by slight deformation and efficient electron donation with C_(2)H_(5)^(*)species.Remarkably,the second C-H bond cleavage on Fe(Ⅱ)-S-1 undergoes a spin-crossing process from quintet state to triplet state,which involves a two-electro n-two-orbital interaction,further promoting the formation of ethylene.Microkinetic analysis is consistent with the experimental and DFT results.This work could provide methodology for elucidating the effect of metal valence states on catalytic performance as well as offer guidance for designing more efficient Fe-zeolite catalysts.展开更多
Phosphate removal is crucial for eutrophication control and water quality improvement.Electro-assisted adsorption,an eco-friendly elec-trosorption process,exhibited a promising potential for wastewater treatment.Howev...Phosphate removal is crucial for eutrophication control and water quality improvement.Electro-assisted adsorption,an eco-friendly elec-trosorption process,exhibited a promising potential for wastewater treatment.However,there are few works focused on phosphate electro-sorption,and reported electrodes cannot attach satisfactory removal capacities and rates.Herein,electro-assisted adsorption of phosphate via in-situ construction of La active centers on hierarchically porous carbon(LaPC)has been originally demonstrated.The resulted LaPC composite not only possessed a hierarchically porous structure with uniformly dispersed La active sites,but also provided good conductivity for interfacial electron transfer.The LaPC electrode achieved an ultrahigh phosphate electrosorption capability of 462.01 mg g^(-1) at 1 V,outperforming most existing electrodes.The superior phosphate removal performance originates from abundant active centers formed by the coupling of electricfield and capture sites.Besides,the stability and selectivity toward phosphate capture were maintained well even under comprehensive conditions.Moreover,a series of kinetics and isotherms models were employed to validate the electrosorption process.This work demonstrates a deep understanding and promotes a new level of phosphate electrosorption.展开更多
An effective breeding blanket is critical to support tritium self-sufficiency for future fusion reactors.The difficulty is to achieve tritium breeding ratio(TBR)target of 1.05 or more.This paper presents a new design ...An effective breeding blanket is critical to support tritium self-sufficiency for future fusion reactors.The difficulty is to achieve tritium breeding ratio(TBR)target of 1.05 or more.This paper presents a new design approach to the blanket design process.It indicates that fusion blanket design is affected by universal functions based on iterations.Three aspects are worth more attention from fusion engineers in the future.The first factor is that the iterations on the material fractions affect not only structure scheme but also TBR variation.The second factor is the cooling condition affecting final TBR due to the change of the structure material proportion.The third factor is temperature field related to the tritium release.In particular,it is suggested that the statistical calculation of effective TBR must be under reasonable control of the blanket temperature field.This approach is novel for blanket engineering in development of a fusion reactor.展开更多
Bone marrow edema(BME)is characterized by an accumulation of interstitial fluid within the bone marrow,the cancellous,hematopoietic compartment within bones.[1]BME is divided into two principal categories:idiopathic o...Bone marrow edema(BME)is characterized by an accumulation of interstitial fluid within the bone marrow,the cancellous,hematopoietic compartment within bones.[1]BME is divided into two principal categories:idiopathic or primary BME,with an unknown etiology,and secondary BME,which occurs as a result of an identifiable underlying pathology.[2]Although the prevalence of BME is not limited to specific demographic parameters,it shows a predilection for males or individuals assigned male at birth,predominantly aged between the ages of 30 and 60 years,especially in cases of bone marrow edema syndrome(BMES),a rare idiopathic variant.[3]The etiological spectrum of BME is diverse,including oncological entities(such as acute myeloid leukemia and osteosarcoma),degenerative diseases(such as osteoarthritis),infectious processes(osteomyelitis),ischemic conditions(avascular necrosis),metabolic dysfunctions(osteoporosis),inflammatory disorders(rheumatoid arthritis),and traumatic injuries(such as stress fractures).[1,2]Clinically,BME primarily manifests as localized pain,often accompanied by joint effusion and warmth near the affected joint.Diagnostic protocols typically include physical examination,serological assays,bone marrow biopsies,dual-energy X-ray absorptiometry(DEXA)scans,magnetic resonance imaging(MRI),and ultrasonography,with computed tomography(CT)scans and radiographs being less effective.展开更多
The forging stage of rail flash welding has a decisive influence on joint strength,and the study of the temperature distribution in the process has an important role in further improving joint strength.In this paper,t...The forging stage of rail flash welding has a decisive influence on joint strength,and the study of the temperature distribution in the process has an important role in further improving joint strength.In this paper,three calculation methods for the temperature field are given.First,the finite element model of the temperature field before forging rail flash welding is established by using the transient heat module of Ansys software and verified by infrared temperature measurement.Second,the temperature distribution of different parts of the rail before flash welding is obtained by using infrared thermal imaging equipment.Third,Matlab software is used to calculate the temperature of the non-measured part.Finally,the temperature distribution function along the rail axis is fitted through the temperature measurement data.The temperature distribution before the top forging of the rail flash welding can be used to analyze the joint and heat-affected zone organization and properties effectively and to guide the parameter setting and industrial production.展开更多
基金supported by the National Natural Science Foundation of China(42171109,32130068)the Youth Innovation Promotion Association of Chinese Academy of Sciences(2020237)National Key R&D Program of China(2023YFF1304604).
文摘Urban vegetation plays a crucial role in regulating temperatures and heat waves in urban areas.However,the influence of vegetation coverage and its configuration on surface temperatures in different climate zones at a national scale is unclear.To address this,we utilized high-resolution data to detect spatial patterns for 31 provincial capital cities in China.We integrated day and night surface temperatures to determine the influence of vegetative coverage and configuration on urban temperatures across different climate zones and city sizes.Our study revealed that a subtropical monsoon climate and medium-sized cities had the highest vegetative coverage and shape complexity.The best connectivity and agglomeration of vegetation were found in a temperate monsoon climate and large cities.In contrast,small cities,especially those under a temperate continental climate,had low vegetation coverage,high fragmentation,and weak agglomeration and connectivity.In addition,vegetative coverage had a negative impact on daytime surface temperatures,especially in large cities in a subtropical monsoon climate.However,an increase in vegetation coverage could result in warming at night in small cities in temperate continental climates.Although urban vegetation configuration also contributed to moderating surface temperatures,especially at night,they did not surpass the influence of vegetation coverage.The effect on nighttime temperatures of the configuration of vegetation increased by 3–6%relative to that of daytime temperatures,especially in large cities in a temperate monsoon climate.The contribution vegetation coverage and configuration interaction to cooling efficiency decreased at night,especially in medium-sized cities in a temperate continental climate by 3–5%.In addition,this study identified several moderating effects of natural and social factors on the relationship between urban vegetation coverage and surface temperatures.High duration of sunshine,low humidity and high wind speed significantly enhanced the negative impact of vegetation coverage on surface temperatures.In addition,the moderating effect of vegetation coverage was more pronounced in low population density cities and high gross domestic product.This study enhances understanding of the ecological functions of urban vegetation and provides a valuable scientific basis and strategic recommendations for optimizing urban vegetation and improving urban environmental quality.
基金supported by the National Natural Science Foundation of China(52370041)National Natural Science Foundation of China(21976134 and 21707104)State Key Laboratory of Pollution treatment and Resource Reuse Foundation(NO.PCRRK21001).
文摘To meet the growing emission of water contaminants,the development of new materials that enhance the efficiency of the water treatment system is urgent.Ordered mesoporous materials provide opportunities in environmental processing applications due to their exceptionally high surface areas,large pore sizes,and enough pore volumes.These properties might enhance the performance of materials concerning adsorption/catalysis capability,durability,and stability.In this review,we enumerate the ordered mesoporous materials as adsorbents/catalysts and their modifications in water pollution treatment from the past decade,including heavy metals(Hg^(2+),Pb^(2+),Cd^(2+),Cr^(6+),etc.),toxic anions(nitrate,phosphate,fluoride,etc.),and organic contaminants(organic dyes,antibiotics,etc.).These contributions demonstrate a deep understanding of the synergistic effect between the incorporated framework and homogeneous active centers.Besides,the challenges and perspectives of the future developments of ordered mesoporous materials in wastewater treatment are proposed.This work provides a theoretical basis and complete summary for the application of ordered mesoporous materials in the removal of contaminants from aqueous solutions.
基金supported by State Key Laboratory of Water Resource Protection and Utilization in Coal Mining(No.GJNY-18-73.17).
文摘Electroreduction of nitrate has been gaining wide attention in recent years owing to it's beneficial for converting nitrate into benign N_(2) from the perspective of electrocatalytic denitrification or into value-added ammonia from the perspective of electrocatalytic NH_(3) synthesis.By reason of the undesired formation of ammonia is dominant during electroreduction of nitrate-containing wastewater,chloride has been widely used to improve N_(2) selectivity.Nevertheless,selective electroreduction of nitrate to N2 gas in chloride-containing system poses several drawbacks.In this review,we focus on the key strategies for efficiently enhancing N_(2) selectivity of electroreduction of nitrate in chloride-free system,including optimal selection of elements,combining an active metal catalyst with another metal,manipulating the crystalline morphology and facet orientation,constructing core–shell structure catalysts,etc.Before summarizing the strategies,four possible reaction pathways of electro-reduction of nitrate to N_(2) are discussed.Overall,this review attempts to provide practical strategies for enhancing N2 selectivity without the aid of electrochlorination and highlight directions for future research for designing appropriate electrocatalyst for final electrocatalytic denitrifi-cation.
基金supported by Natural Science Foundation of Gansu (No.21JR7RA111)CAS Light of West China Program (2020XBZG-XBQNXZ-A)the 2022 Major scientific Research Project Cultivation Plan of Northwest Normal University (WNU-LKZD2022-04).
文摘Global warming and frequent extreme drought events lead to tree death and extensive forest decline,but the underlying mechanism is not clear.In drought years,cambial development is more sensitive to climate change,but in different phenological stages,the response rela-tionship is nonlinear.Therefore,the dynamic relationship between tree radial growth and climatic/environmental fac-tors needs to be studied.We thus continuously monitored radial growth of Qinghai spruce(Picea crassifolia Kom.)and environmental factors from January 2021 to November 2022 using point dendrometers and portable meteorological weather stations in the central area of the Qilian Mountains.The relationship and stability between the radial growth of Qinghai spruce and environmental factors were compared for different levels of drought in 2021 and 2022.The year 2022 had higher temperatures and less precipitation and was drier than 2021.Compared with 2021,the growing period in 2022 for Qinghai spruce was 10 days shorter,maximum growth rate(Grmax)was 4.5μm·d^(-1) slower,and the initiation of growth was 6 days later.Growth of Qinghai spruce was always restricted by drought,and the stem radial increment(SRI)was more sensitive to precipitation and air relative humidity.Seasonal changes in cumulative radial growth were divided into four phenological stages according to the time of growth onset,cessation,and maximum growth rate(Grmax)of Qinghai spruce.Stability responses of SRI to climate change were stronger in Stage 3 and Stage 4 of 2021 and stronger in Stage 1(initiation growth stage)and Stage 3 of 2022.The results provide important information on the growth of the trees in response to drought and for specific managing forests as the climate warms.
基金supported by the National Natural Science Foundation of China(Project Nos.51774062 and 52274032)Scientific and Technological Key Research Program of Chongqing Municipal Education Commission(KJZD-K201901502)+1 种基金General Project of Chongqing Natural Science Foundation(CSTB2022NSCQMSX0349)Science and Technology Research Program of Chongqing Municipal Education Commission(KJQN202313101)。
文摘Two allyldimethylalkyl quaternary ammonium salt(AQAS)monomers,N,N-dimethylallylphenylpropylammonium bromide(AQAS1)and N,N-dimethylallylnonylammonium bromide(AQAS2),were synthesized and used to prepare modified polyacrylamide materials.Two new drag reducers were synthesized from acrylamide(AM),sodium acrylate(Na AA)and a cationic modified monomer(AQAS1 or AQAS2)via aqueous solution polymerization,and the copolymers were named P(AM/Na AA/AQAS1)and P(AM/Na AA/AQAS2),respectively.The structures of the drag reduction agents were confirmed by IR and1H NMR spectroscopies.The molecular weight(Mw)of P(AM/Na AA/AQAS1)was 1.79×10^(6)g/mol.When the copolymer concentration was 1000 mg/L and the flow rate was 45 L/min,in fresh water the highest drag reduction rate was 75.8%,in 10,000 mg/L Na Cl solution the drag reduction rate decreased to 72.9%.The molecular weight of P(AM/Na AA/AQAS2)was 3.17×10^(6)g/mol.When the copolymer concentration was500 mg/L and the flow rate was 45 L/min,the drag reduction rate reached 75.2%,and in 10,000 mg/L Na Cl solution the drag reduction rate was 73.3%,decreased by approximately 1.9%.The drag reduction rate for partially hydrolyzed polyacrylamide(HPAM)was also investigated,and the results showed that the drag reduction rates for 500 and 1000 mg/L HPAM solutions were merely 43.2%and 49.0%in brine,respectively.Compared with HPAM,both of the above copolymers presented better drag reduction capacities.
基金the financial support from the National Natural Science Foundation of China (22035009,22178381)the National Key R&D Program of China (2021YFA1501301,2021YFC2901100)。
文摘Light alkanes non-oxidative dehydrogenation is an attractive non-oil route for olefins production.The alkane dehydrogenation reaction is limited by thermodynamic equilibrium,and the C-H bond cleavage is commonly considered as the rate-determined step.The valence state of metal sites in catalysts will influence the stabilization of the vital intermediate(i.e.,C_(x)H_(y)...M^(δ+)...H)during the C-H bond cleavage process,which in turn affects the catalytic reactivity.Herein,we explicitly investigated the effect of different valence states of framework-Fe in silicate-1 zeolite on ethane dehydrogenation reaction through the combination of experimental and theoretical study.Fe(Ⅱ)-S-1 and Fe(Ⅲ)-S-1 catalysts are successfully synthesized by ligand-assisted in situ crystallization method,In-situ C_(2)H_6-FTIR shows the higher coverage of hydrocarbon intermediates on Fe(Ⅱ)-S-1,Under the same evaluation co nditio n,Fe(Ⅱ)-S-1 exhibits a higher space time yield of ethylene.Density functional theory(DFT)results reveal that the more coordinate-unsaturated and electron-enriched Fe(Ⅱ)sites boost the first C-H bond activation by slight deformation and efficient electron donation with C_(2)H_(5)^(*)species.Remarkably,the second C-H bond cleavage on Fe(Ⅱ)-S-1 undergoes a spin-crossing process from quintet state to triplet state,which involves a two-electro n-two-orbital interaction,further promoting the formation of ethylene.Microkinetic analysis is consistent with the experimental and DFT results.This work could provide methodology for elucidating the effect of metal valence states on catalytic performance as well as offer guidance for designing more efficient Fe-zeolite catalysts.
基金This work is financially supported by the National Science Foundation of Tianjin(17JCYBJC23300).
文摘Phosphate removal is crucial for eutrophication control and water quality improvement.Electro-assisted adsorption,an eco-friendly elec-trosorption process,exhibited a promising potential for wastewater treatment.However,there are few works focused on phosphate electro-sorption,and reported electrodes cannot attach satisfactory removal capacities and rates.Herein,electro-assisted adsorption of phosphate via in-situ construction of La active centers on hierarchically porous carbon(LaPC)has been originally demonstrated.The resulted LaPC composite not only possessed a hierarchically porous structure with uniformly dispersed La active sites,but also provided good conductivity for interfacial electron transfer.The LaPC electrode achieved an ultrahigh phosphate electrosorption capability of 462.01 mg g^(-1) at 1 V,outperforming most existing electrodes.The superior phosphate removal performance originates from abundant active centers formed by the coupling of electricfield and capture sites.Besides,the stability and selectivity toward phosphate capture were maintained well even under comprehensive conditions.Moreover,a series of kinetics and isotherms models were employed to validate the electrosorption process.This work demonstrates a deep understanding and promotes a new level of phosphate electrosorption.
基金supported by the Project for Scientific Research of West Anhui University(No.00701092282)。
文摘An effective breeding blanket is critical to support tritium self-sufficiency for future fusion reactors.The difficulty is to achieve tritium breeding ratio(TBR)target of 1.05 or more.This paper presents a new design approach to the blanket design process.It indicates that fusion blanket design is affected by universal functions based on iterations.Three aspects are worth more attention from fusion engineers in the future.The first factor is that the iterations on the material fractions affect not only structure scheme but also TBR variation.The second factor is the cooling condition affecting final TBR due to the change of the structure material proportion.The third factor is temperature field related to the tritium release.In particular,it is suggested that the statistical calculation of effective TBR must be under reasonable control of the blanket temperature field.This approach is novel for blanket engineering in development of a fusion reactor.
基金Sanming Project of Medicine in Shenzhen(No.SZSM202211019).
文摘Bone marrow edema(BME)is characterized by an accumulation of interstitial fluid within the bone marrow,the cancellous,hematopoietic compartment within bones.[1]BME is divided into two principal categories:idiopathic or primary BME,with an unknown etiology,and secondary BME,which occurs as a result of an identifiable underlying pathology.[2]Although the prevalence of BME is not limited to specific demographic parameters,it shows a predilection for males or individuals assigned male at birth,predominantly aged between the ages of 30 and 60 years,especially in cases of bone marrow edema syndrome(BMES),a rare idiopathic variant.[3]The etiological spectrum of BME is diverse,including oncological entities(such as acute myeloid leukemia and osteosarcoma),degenerative diseases(such as osteoarthritis),infectious processes(osteomyelitis),ischemic conditions(avascular necrosis),metabolic dysfunctions(osteoporosis),inflammatory disorders(rheumatoid arthritis),and traumatic injuries(such as stress fractures).[1,2]Clinically,BME primarily manifests as localized pain,often accompanied by joint effusion and warmth near the affected joint.Diagnostic protocols typically include physical examination,serological assays,bone marrow biopsies,dual-energy X-ray absorptiometry(DEXA)scans,magnetic resonance imaging(MRI),and ultrasonography,with computed tomography(CT)scans and radiographs being less effective.
基金supported by the China National Railway Group Corporation Science and Technology Research and Development Program(J2022G009)Dr.Jingjing Li received no grant support.
文摘The forging stage of rail flash welding has a decisive influence on joint strength,and the study of the temperature distribution in the process has an important role in further improving joint strength.In this paper,three calculation methods for the temperature field are given.First,the finite element model of the temperature field before forging rail flash welding is established by using the transient heat module of Ansys software and verified by infrared temperature measurement.Second,the temperature distribution of different parts of the rail before flash welding is obtained by using infrared thermal imaging equipment.Third,Matlab software is used to calculate the temperature of the non-measured part.Finally,the temperature distribution function along the rail axis is fitted through the temperature measurement data.The temperature distribution before the top forging of the rail flash welding can be used to analyze the joint and heat-affected zone organization and properties effectively and to guide the parameter setting and industrial production.