Metal-based compounds are promising adsorbents for phosphate.A novel dual metal-organic framework as an effective adsorbent for phosphate was synthesized by a solvothermal method.The structure analysis revealed that t...Metal-based compounds are promising adsorbents for phosphate.A novel dual metal-organic framework as an effective adsorbent for phosphate was synthesized by a solvothermal method.The structure analysis revealed that the as-prepared adsorbent(denoted as MIL-101(Fe/Zr))possessed a porous polyhedral structure with a large specific surface area of 479.1 m^(2)/g and a pore width of 3.4 nm.The X-ray diffraction pattern and Fourier transform infrared spectra suggested that the MIL-101(Fe/Zr)shared a similar structure with MIL-101(Fe),implying successful incorporation of Zr atoms as a second metal into the MIL-101(Fe)structure.Kinetic adsorption of PO_(4)^(3-)by MIL-101(Fe/Zr)conformed to the pseudo-second-order model and intraparticle diffusion model,while adsorption isotherm fitted the Freundlich model well(R^(2)=0.9785).It is suggested that such an adsorption belonged to multiply-layer adsorption.The adsorption capacity of MIL-101(Fe/Zr)was to be 66.00 mg/g.MIL-101(Fe/Zr)performed well at a wide range of pH 2.0~10.0 and high ionic strength(0~40 mg/L NaCl).A structural analysis indicated that the complexation interaction was mainly responsible for PO_(4)^(3-)adsorption.These findings can inspire preparation of other dual metal MOFs adsorbent for phosphate removal and recovery from water.展开更多
基金Hebei Provincial Natural Science Foundation,China(C2021403002)Hebei Province Collaborative Innovation Center for Sustainable Utilization of Water Resources and Optimization of Industrial Structure,China(XTZX202115)Hebei Provincial Laboratory of Water Environment Science(HBSHJ202109)。
文摘Metal-based compounds are promising adsorbents for phosphate.A novel dual metal-organic framework as an effective adsorbent for phosphate was synthesized by a solvothermal method.The structure analysis revealed that the as-prepared adsorbent(denoted as MIL-101(Fe/Zr))possessed a porous polyhedral structure with a large specific surface area of 479.1 m^(2)/g and a pore width of 3.4 nm.The X-ray diffraction pattern and Fourier transform infrared spectra suggested that the MIL-101(Fe/Zr)shared a similar structure with MIL-101(Fe),implying successful incorporation of Zr atoms as a second metal into the MIL-101(Fe)structure.Kinetic adsorption of PO_(4)^(3-)by MIL-101(Fe/Zr)conformed to the pseudo-second-order model and intraparticle diffusion model,while adsorption isotherm fitted the Freundlich model well(R^(2)=0.9785).It is suggested that such an adsorption belonged to multiply-layer adsorption.The adsorption capacity of MIL-101(Fe/Zr)was to be 66.00 mg/g.MIL-101(Fe/Zr)performed well at a wide range of pH 2.0~10.0 and high ionic strength(0~40 mg/L NaCl).A structural analysis indicated that the complexation interaction was mainly responsible for PO_(4)^(3-)adsorption.These findings can inspire preparation of other dual metal MOFs adsorbent for phosphate removal and recovery from water.