An analytical method is presented to fit parameters of Jones-Wilkins-Lee (JWL) equation of state (EOS) for the chemical process of aluminum-polytetrafluoroethylene ( AI/PTFE ) mixture. Subroutine codes for both ...An analytical method is presented to fit parameters of Jones-Wilkins-Lee (JWL) equation of state (EOS) for the chemical process of aluminum-polytetrafluoroethylene ( AI/PTFE ) mixture. Subroutine codes for both strength model and EOS were developed in explicit-FE code AUTODYN. Firstly, the shock Hugoniot data of reactive A1/PTFE mixture was analytically derived by implemen- ting this methodology. The JWL EOS was verified to fit shock Hugoniot data of both reacted and un- reacted A1/PTFE mixture, which gives reasonable results. Furthermore, to numerically ascertain the reaction phases of ignition and growth and quasi detonation of A1/PTFE mixture, characterized ex- periment was setup to validate the reaction phases and coefficients of JWL EOS for A1/PTFE mix- ture. From the test, a promising example of reactive mixture A1/PTFE is capable to enhance lethality of weapons, the status computation in clude quasi-detonation pressure and temperature of A1/PTFE mixture in different chemical reaction phases is validated.展开更多
The fragments mass and size from penetrator with enhanced lateral effect (PELE) perforating thin rolled homogenous armor (RHA) target was characterized through theoretical and numerical methods. An analytical mode...The fragments mass and size from penetrator with enhanced lateral effect (PELE) perforating thin rolled homogenous armor (RHA) target was characterized through theoretical and numerical methods. An analytical model based on energy-limited spall (ELS) was proposed to predict fragments mass distribution of PELE with different cores and impact velocities. For different cores the expansion can be represented by a scaling factor l in the analytical calculation. The explicit finite-element (FE)-analysis of PELE fragmentation was implemented with stochastic failure criterion in AUTODYN-3D code. By statistical distribution of "weak points" in numerical model of PELE, the dynamic fragmentation was delineated to simulate Flaw-limited spall as in real material. To verify the accuracy of theoretical calculation and validate numerical results, experiments of PELE perforating thin RHA target was setup, fragments were collected by using recovery cabin filled with foam and soft sands. Both energy limited spall theory and Flaw limited approach showed accurate results compared with experimental data.展开更多
基金Supported by Specialized Research Fund for the Doctoral Program of Higher Education(20091101120009)the Project of State Key Laboratory of Science and Technology(YBKT09-03)+1 种基金the National Natural Science Foundation of China(11032002)National Basic Research Program of China(2010CB832706)
文摘An analytical method is presented to fit parameters of Jones-Wilkins-Lee (JWL) equation of state (EOS) for the chemical process of aluminum-polytetrafluoroethylene ( AI/PTFE ) mixture. Subroutine codes for both strength model and EOS were developed in explicit-FE code AUTODYN. Firstly, the shock Hugoniot data of reactive A1/PTFE mixture was analytically derived by implemen- ting this methodology. The JWL EOS was verified to fit shock Hugoniot data of both reacted and un- reacted A1/PTFE mixture, which gives reasonable results. Furthermore, to numerically ascertain the reaction phases of ignition and growth and quasi detonation of A1/PTFE mixture, characterized ex- periment was setup to validate the reaction phases and coefficients of JWL EOS for A1/PTFE mix- ture. From the test, a promising example of reactive mixture A1/PTFE is capable to enhance lethality of weapons, the status computation in clude quasi-detonation pressure and temperature of A1/PTFE mixture in different chemical reaction phases is validated.
基金Supported by the Doctoral Program Foundation of Higher Education (20070007026)
文摘The fragments mass and size from penetrator with enhanced lateral effect (PELE) perforating thin rolled homogenous armor (RHA) target was characterized through theoretical and numerical methods. An analytical model based on energy-limited spall (ELS) was proposed to predict fragments mass distribution of PELE with different cores and impact velocities. For different cores the expansion can be represented by a scaling factor l in the analytical calculation. The explicit finite-element (FE)-analysis of PELE fragmentation was implemented with stochastic failure criterion in AUTODYN-3D code. By statistical distribution of "weak points" in numerical model of PELE, the dynamic fragmentation was delineated to simulate Flaw-limited spall as in real material. To verify the accuracy of theoretical calculation and validate numerical results, experiments of PELE perforating thin RHA target was setup, fragments were collected by using recovery cabin filled with foam and soft sands. Both energy limited spall theory and Flaw limited approach showed accurate results compared with experimental data.