为了实现对高速公路立柱端面导波信号的自动识别,进而实现立柱的埋深检测,对立柱端面处导波信号的相位特性进行了分析研究。通过推导计算反射系数得出端面回波信号与激励脉冲信号反相的相位特性。采用基于Gabor字典的匹配追踪算法分别对...为了实现对高速公路立柱端面导波信号的自动识别,进而实现立柱的埋深检测,对立柱端面处导波信号的相位特性进行了分析研究。通过推导计算反射系数得出端面回波信号与激励脉冲信号反相的相位特性。采用基于Gabor字典的匹配追踪算法分别对ABAQUS有限元仿真信号和实测导波信号进行了稀疏分解,通过所得匹配原子的相位参数验证了回波信号的相位特性,其中实测信号为分别用64 k Hz和128 k Hz的T(0,1)模态导波对埋地立柱和自由立柱进行检测所得。仿真与实测信号的试验结果与理论分析相吻合,回波信号的相位特性为导波检测中的信号处理技术提供了新的途径和方法。展开更多
A simplified quasi-static computational model for self-sensing applications of magnetostrictive actuators based on terfenol-D rods is presented. Paths and angle changes in the magnetic moments rotation of Tb0.3Dy0.7Fe...A simplified quasi-static computational model for self-sensing applications of magnetostrictive actuators based on terfenol-D rods is presented. Paths and angle changes in the magnetic moments rotation of Tb0.3Dy0.7Fe2 alloy are studied as functions of compressive stress and magnetic field, and then used to determine the magnetization in its actuation. Then sensing of magnetic induction picked from a driving coil in an actuator is derived. The model is quick and efficient to solve moments rotation and its magnetization. Sensing results of compressive stress and magnetostriction calculated by the model are in good agreement with experiments and will be helpful in the design and control of self-sensing applications in actuators.展开更多
文摘为了实现对高速公路立柱端面导波信号的自动识别,进而实现立柱的埋深检测,对立柱端面处导波信号的相位特性进行了分析研究。通过推导计算反射系数得出端面回波信号与激励脉冲信号反相的相位特性。采用基于Gabor字典的匹配追踪算法分别对ABAQUS有限元仿真信号和实测导波信号进行了稀疏分解,通过所得匹配原子的相位参数验证了回波信号的相位特性,其中实测信号为分别用64 k Hz和128 k Hz的T(0,1)模态导波对埋地立柱和自由立柱进行检测所得。仿真与实测信号的试验结果与理论分析相吻合,回波信号的相位特性为导波检测中的信号处理技术提供了新的途径和方法。
基金Project supported by the National Preeminent Youth Foundation(Grant No.51225702)the National Natural Science Foundation of China(Grant No.51177024)
文摘A simplified quasi-static computational model for self-sensing applications of magnetostrictive actuators based on terfenol-D rods is presented. Paths and angle changes in the magnetic moments rotation of Tb0.3Dy0.7Fe2 alloy are studied as functions of compressive stress and magnetic field, and then used to determine the magnetization in its actuation. Then sensing of magnetic induction picked from a driving coil in an actuator is derived. The model is quick and efficient to solve moments rotation and its magnetization. Sensing results of compressive stress and magnetostriction calculated by the model are in good agreement with experiments and will be helpful in the design and control of self-sensing applications in actuators.