We report the study on a short wavelength-tunable vertical-cavity surface-emitting laser utilizing a monolithically integrated bridge tuning microelectromechanical system. A deformable-bridge top mirror suspended abov...We report the study on a short wavelength-tunable vertical-cavity surface-emitting laser utilizing a monolithically integrated bridge tuning microelectromechanical system. A deformable-bridge top mirror suspended above an active region is utilized. Applied bridge-substrate bias produces an electrostatic force which reduces the spacing of air-gap and tunes the resonant wavelength toward a shorter wavelength (blue-shift), Good laser characteristics are obtained: such as continuous tuning ranges over 11 nm near 940 nm for 0-9 V tuning bias, the peak output power near 1 mW and the full-width-half-maximum limited to approximately 3.2-6.8 rim. A detailed simulation of the micromechanical and optical characteristics of these devices is performed, and the ratio of bridge displacement to wavelength shift has been found to be 3:1.展开更多
A low-threshold and high-power oxide-confined 850-nm AlInGaAs strained quantum-well (QW) vertical-cavity surface-emitting laser (VCSEL) based on an intra-cavity contacted structure is fabricated. A threshold curre...A low-threshold and high-power oxide-confined 850-nm AlInGaAs strained quantum-well (QW) vertical-cavity surface-emitting laser (VCSEL) based on an intra-cavity contacted structure is fabricated. A threshold current of 1.5 mA for a 22 μm oxide aperture device is achieved, which corresponds to a threshold current density of 0.395 kA/cm2. The peak output optical power reaches 17.5 mW at an injection current of 30 mA at room temperature under pulsed opera- tion. While under continuous-wave (CW) operation, the maximum power attains 10.5 mW. Such a device demonstrates a high characteristic temperature of 327 K within a temperature range from -12°C to 96 °C and good reliability under a lifetime test. There is almost no decrease of the optical power when the device operates at a current of 5 mA at room temperature under the CW injection current.展开更多
Interference filter-stabilized external cavity diode lasers (ECDLs) have properties of simple configurations, high sta- bilities, and narrow linewidths. However, the interference filter used in common ECDL designs r...Interference filter-stabilized external cavity diode lasers (ECDLs) have properties of simple configurations, high sta- bilities, and narrow linewidths. However, the interference filter used in common ECDL designs requires an ultra-narrow bandwidth (about 0.3 nm) to achieve mode selection, that is considerably expensive and not yet available for a wide range of wavelengths. In this paper, a robust ECDL using an available broad bandwidth (about 4 nm) interference filter as the wavelength discriminator is constructed and tested. The ECDL demonstrated a narrow Lorentzian fitted linewidth of 95 kHz and a spectral purity of 2.9 MHz. The long-term frequency stability of the ECDL reaches 5.59 x 10 12.展开更多
A red-light AIGalnP light emitting diode (LED) is fabricated by using direct wafer bonding technology. Taking N-GaN wafer as the transparent substrate, the red-light LED is flip-chiped onto a structured silicon subm...A red-light AIGalnP light emitting diode (LED) is fabricated by using direct wafer bonding technology. Taking N-GaN wafer as the transparent substrate, the red-light LED is flip-chiped onto a structured silicon submount. Electronic luminance (EL) test reveals that the luminance flux is 130% higher than that of the conventional LED made from the same LED wafer. Current-voltage (I- V) measurement indicates that the bonding processes do not impact the electrical property of AIGalnP LED in the small voltage region (V 〈 1.5 V). In the large voltage region (V 〉 1.5 V), the I-V characteristic exhibits space-charge-limited currents characteristic due to the p-GaAs/n-GaN bonding interface.展开更多
The low-threshold and high-power oxide-confined 850 nm AlInGaAs strained quantum-well (QW) vertical-cavity surface-emitting lasers (VCSELs) based on the intra-cavity contacted structure are fabricated. The thresho...The low-threshold and high-power oxide-confined 850 nm AlInGaAs strained quantum-well (QW) vertical-cavity surface-emitting lasers (VCSELs) based on the intra-cavity contacted structure are fabricated. The threshold current of 0.1 mA for a 10-μm oxide-aperture device is obtained with the threshold current density of 0.127kA/cm^2. For a 22-μm oxide-aperture device, the peak optical output power reaches to 14.6mW at the current injection of 25 mA under the room temperature and pulsed operation with a threshold current of 2mA, which corresponds to the threshold current density of 0.526kA/cm^2. The lasing wavelength is 855.4nm. The full wave at half maximum is 2.2 nm. The analysis of the characteristics and the fabrication of VCSELs are also described.展开更多
A novel two-wafer concept for micro-electro-mechanically tunable vertical cavity surface emitting lasers(VCSELs)is presented.The VCSEL is composed by two wafers:one micro-electromechanical-system membrane wafer with f...A novel two-wafer concept for micro-electro-mechanically tunable vertical cavity surface emitting lasers(VCSELs)is presented.The VCSEL is composed by two wafers:one micro-electromechanical-system membrane wafer with four arms to adjust the cavity length through electrostatic actuation and a"half-VCSEL"wafer consisting of a fixed bottom mirror and an amplifying active region.The measurement results of the electricity pumped tunable VCSEL with more than 9mW output power at room temperature over the tuning range prove the feasibility of the proposition.展开更多
基金the National Natural Science Foundation of China(60908012,61575008,61775007,61874145,62074011,62134008)National Key Research and Development Program of China(2018YFA0209000,2021YFC2203400,2021YFA1200804)+1 种基金the Beijing Natural Science Foun⁃dation(4172011,4202010)Beijing Nova Program(Z201100006820096)。
基金supported by the National Natural Science Foundation of China(61574011,60908012,61575008,61775007,61731019,61874145,62074011,62134008)the Beijing Natural Science Foundation(4182015,4172011,4202010)+1 种基金Beijing Nova Program(Z201100006820096)International Student related expenses-Department of Information(040000513303).
基金Project supported by the National Natural Science Foundation of China (Grant No 60506012), the Fok Ying-Tong Foundation (Grant No 101062), the Natural Science Foundation of Beijing China (Grant No KZ200510005003), the Science Star of Beijing China (Grant No 2005A11), and the Funding Project for Academic Human Resources Development in Institutions of Higher Learning Under the Jurisdiction of Beijing Municipality China (Grant No 20051D0501502).Acknowledgement The authors gratefully acknowledge the staff of M0CVD, Zhou Deshu, and Han Jinru for technical assistance. The authors also thank Professor Academician Chen Lianghui, Professor Tan Manqing and Mr Wang Xuming at the Institute of Semiconductors, CAS for technological support in device fabrication.
文摘We report the study on a short wavelength-tunable vertical-cavity surface-emitting laser utilizing a monolithically integrated bridge tuning microelectromechanical system. A deformable-bridge top mirror suspended above an active region is utilized. Applied bridge-substrate bias produces an electrostatic force which reduces the spacing of air-gap and tunes the resonant wavelength toward a shorter wavelength (blue-shift), Good laser characteristics are obtained: such as continuous tuning ranges over 11 nm near 940 nm for 0-9 V tuning bias, the peak output power near 1 mW and the full-width-half-maximum limited to approximately 3.2-6.8 rim. A detailed simulation of the micromechanical and optical characteristics of these devices is performed, and the ratio of bridge displacement to wavelength shift has been found to be 3:1.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.60908012 and 61076148)the Foundation of Beijing Municipal Education Commission,China (Grant No.KM201010005030)
文摘A low-threshold and high-power oxide-confined 850-nm AlInGaAs strained quantum-well (QW) vertical-cavity surface-emitting laser (VCSEL) based on an intra-cavity contacted structure is fabricated. A threshold current of 1.5 mA for a 22 μm oxide aperture device is achieved, which corresponds to a threshold current density of 0.395 kA/cm2. The peak output optical power reaches 17.5 mW at an injection current of 30 mA at room temperature under pulsed opera- tion. While under continuous-wave (CW) operation, the maximum power attains 10.5 mW. Such a device demonstrates a high characteristic temperature of 327 K within a temperature range from -12°C to 96 °C and good reliability under a lifetime test. There is almost no decrease of the optical power when the device operates at a current of 5 mA at room temperature under the CW injection current.
基金Project supported by the Foundation of Based Technology of China(Grant No.YXBGD20151JL01)the National Natural Science Foundation of China(Grant Nos.61376049,61604007,11674016,61378058,61575008,and 61574011)+1 种基金the Natural Science Foundation of Beijing City,China(Grant Nos.4172009 and4152003)the Beijing Municipal Commission of Education of China(Grant Nos.PXM2017 014204 500034 and PXM2016 014204 500018)
文摘Interference filter-stabilized external cavity diode lasers (ECDLs) have properties of simple configurations, high sta- bilities, and narrow linewidths. However, the interference filter used in common ECDL designs requires an ultra-narrow bandwidth (about 0.3 nm) to achieve mode selection, that is considerably expensive and not yet available for a wide range of wavelengths. In this paper, a robust ECDL using an available broad bandwidth (about 4 nm) interference filter as the wavelength discriminator is constructed and tested. The ECDL demonstrated a narrow Lorentzian fitted linewidth of 95 kHz and a spectral purity of 2.9 MHz. The long-term frequency stability of the ECDL reaches 5.59 x 10 12.
基金Supported by the National Basic Research Program of China under Grant No 2006CB604902, the National High Technology Research and Development Program of China under Grant No 2006AA03A121 the National Natural Science Foundation of China under Grant No 60506012, the Fok Ying Tong Foundation under Grant No 101062, the Beijing Municipal Commission of Education (KZ200510005003, 05002015200504), and the Excellent PhD Thesis Foundation of High Education of China (200542).
文摘A red-light AIGalnP light emitting diode (LED) is fabricated by using direct wafer bonding technology. Taking N-GaN wafer as the transparent substrate, the red-light LED is flip-chiped onto a structured silicon submount. Electronic luminance (EL) test reveals that the luminance flux is 130% higher than that of the conventional LED made from the same LED wafer. Current-voltage (I- V) measurement indicates that the bonding processes do not impact the electrical property of AIGalnP LED in the small voltage region (V 〈 1.5 V). In the large voltage region (V 〉 1.5 V), the I-V characteristic exhibits space-charge-limited currents characteristic due to the p-GaAs/n-GaN bonding interface.
基金Supported by the National Natural Science Foundation of China under Grant Nos 60276033 and 60506012, the National High Technology Research and Development Programme of China under Grant Nos 2002AA312070 and 2004AA311030, and the Natural Science Foundation of Beijing under Grant No K2200510005003.
文摘The low-threshold and high-power oxide-confined 850 nm AlInGaAs strained quantum-well (QW) vertical-cavity surface-emitting lasers (VCSELs) based on the intra-cavity contacted structure are fabricated. The threshold current of 0.1 mA for a 10-μm oxide-aperture device is obtained with the threshold current density of 0.127kA/cm^2. For a 22-μm oxide-aperture device, the peak optical output power reaches to 14.6mW at the current injection of 25 mA under the room temperature and pulsed operation with a threshold current of 2mA, which corresponds to the threshold current density of 0.526kA/cm^2. The lasing wavelength is 855.4nm. The full wave at half maximum is 2.2 nm. The analysis of the characteristics and the fabrication of VCSELs are also described.
基金Supported by the National Basic Research Program of China under Grant No 2006CB604902the National Natural Science Foundation of China under Grant No 60908012+2 种基金the Program for New Century Excellent Talents in University of Ministry of Education of China under Grant No 39002013200801the National Natural Science Foundation of China under Grant No 61076048the Board of Education Research Project under Grant No KM2010005030.
文摘A novel two-wafer concept for micro-electro-mechanically tunable vertical cavity surface emitting lasers(VCSELs)is presented.The VCSEL is composed by two wafers:one micro-electromechanical-system membrane wafer with four arms to adjust the cavity length through electrostatic actuation and a"half-VCSEL"wafer consisting of a fixed bottom mirror and an amplifying active region.The measurement results of the electricity pumped tunable VCSEL with more than 9mW output power at room temperature over the tuning range prove the feasibility of the proposition.