期刊文献+
共找到96篇文章
< 1 2 5 >
每页显示 20 50 100
基于度量学习的半监督空中目标作战意图识别
1
作者 张晨浩 周焰 +3 位作者 梁复台 周通 宋子豪 袁凯 《现代防御技术》 北大核心 2025年第1期52-62,共11页
空中战场态势是对空中战场中所有参与方行动和状态的总体描述,而目标作战意图识别则为空中战场态势评估提供重要依据。为了解决在激烈对抗、快速演化的空中战场态势背景下,大量已标记的空中目标战场态势数据获取难度大的问题,提出了一... 空中战场态势是对空中战场中所有参与方行动和状态的总体描述,而目标作战意图识别则为空中战场态势评估提供重要依据。为了解决在激烈对抗、快速演化的空中战场态势背景下,大量已标记的空中目标战场态势数据获取难度大的问题,提出了一种基于度量学习的半监督空中目标作战意图识别模型。该模型提供了一种从无标签样本中发掘潜在模式的方法,缓解了对大量标记数据的需求。模型通过目标时序数据编码器对目标序列数据进行降维并得到其嵌入表示。在此基础上,通过分别度量已标记的目标序列与意图类型、未标记的目标序列之间的相似度,计算对应的损失值。实验结果表明,在有标签样本不同占比为30%、40%和50%的情况下,该模型识别空中目标作战意图的准确率分别为86%、89%和91%。 展开更多
关键词 空中目标 战场态势 作战意图 意图识别 度量学习 半监督学习
在线阅读 下载PDF
一种非凸随机优化框架下的度量学习算法研究
2
作者 徐忠城 胡恩良 《现代信息科技》 2025年第5期99-104,共6页
文章针对度量学习原凸问题的非凸重新表述,提出了一种带方差缩减策略的非凸随机优化算法(ML_NSVR),用于更高效地求解非凸度量学习问题。在适当的初始选择下,该算法在有限制的强凸条件下能够收敛,其收敛性得到了理论证明。数值实验验证... 文章针对度量学习原凸问题的非凸重新表述,提出了一种带方差缩减策略的非凸随机优化算法(ML_NSVR),用于更高效地求解非凸度量学习问题。在适当的初始选择下,该算法在有限制的强凸条件下能够收敛,其收敛性得到了理论证明。数值实验验证了算法的有效性,为解决非凸度量学习问题提供了一种新的思路。同时,文章将所提算法与传统的随机梯度下降算法(SGD)和随机方差缩减梯度算法(SVRG)进行了优化效果对比。实验结果表明,ML_NSVR算法的效率更高。 展开更多
关键词 随机优化 度量学习 方差缩减 非凸优化
在线阅读 下载PDF
动态生成难样本的度量学习算法
3
作者 韩露 《信息技术与信息化》 2025年第2期121-124,共4页
度量学习算法的性能在很大程度上受样本构建的约束影响,通常情况下由难样本构造的约束越多模型性能会越好,但目前大部分度量学习算法挖掘到的难样本非常少,从而导致学习的度量判别力不高。为了解决这一问题,文章提出了一种动态生成难样... 度量学习算法的性能在很大程度上受样本构建的约束影响,通常情况下由难样本构造的约束越多模型性能会越好,但目前大部分度量学习算法挖掘到的难样本非常少,从而导致学习的度量判别力不高。为了解决这一问题,文章提出了一种动态生成难样本的度量学习算法(metric learning algorithm for dynamically generating of hard sample,SGML),算法主要思想是在数据集原有的异类样本中间生成新样本,以此生成的样本更难区分,从而提升模型的判别力。在UCI数据集上进行准确率以及参数灵敏度分析的相关实验,结果表明SGML算法可以提升模型的判别力和健壮性。 展开更多
关键词 难样本 马氏距离 生成样本 度量学习
在线阅读 下载PDF
基于多模态和度量学习的小样本图像分类方法 被引量:1
4
作者 岳之一 钱素琴 《东华大学学报(自然科学版)》 CAS 北大核心 2024年第6期146-150,共5页
在小样本图像分类中,由于样本数量有限,神经网络难以进行充分训练,同时仅使用单一的判别方法容易产生相似性偏差,分类准确率较低。针对上述问题,提出一种多模态和度量学习相结合的小样本图像分类模型。使用卷积神经网络提取查询集和支... 在小样本图像分类中,由于样本数量有限,神经网络难以进行充分训练,同时仅使用单一的判别方法容易产生相似性偏差,分类准确率较低。针对上述问题,提出一种多模态和度量学习相结合的小样本图像分类模型。使用卷积神经网络提取查询集和支持集图像的特征,通过度量模块判断图像与图像间的相似度;通过多模态模块对已知类别图像的文本信息与查询图像进行跨模态对比,从而计算查询图像与每个类别文本信息的相似度;最后结合两种相似度,基于多模态信息得出最终预测结果。在MiniImagenet和CUB-200-2011两个数据集上进行小样本分类试验,同时与6种先进的小样本分类模型进行对比,结果显示,所提模型的分类准确率优于其他模型。试验结果证实了所提模型的有效性。 展开更多
关键词 小样本学习 图像分类 度量学习 多模态
在线阅读 下载PDF
基于深度度量学习的强泛化开关仪表识别算法 被引量:1
5
作者 冯天任 陈世峰 《集成技术》 2024年第5期30-39,共10页
针对电厂开关检测方法无法应对现实开集环境,对稀有类别识别准确率低的现状,将目标识别问题转化为相似性度量问题,并提出新算法。新算法基于深度度量学习的三元组网络,利用加入SE Block的ResNet-18提取特征,并利用跨批次挖掘增强学习效... 针对电厂开关检测方法无法应对现实开集环境,对稀有类别识别准确率低的现状,将目标识别问题转化为相似性度量问题,并提出新算法。新算法基于深度度量学习的三元组网络,利用加入SE Block的ResNet-18提取特征,并利用跨批次挖掘增强学习效果。为评估算法性能,创建了一个包含3300张开关图片的数据集,并使用新算法在该数据集上进行了闭集测试、开集测试、小样本测试。结果表明:新算法在闭集状态下具有良好的区分能力,不仅能准确识别训练集中的类别,还能有效区分训练时未遇到的及出现频率较低的状态。由此表明,该算法不仅适用于现实世界的开集环境,而且能显著提升对小样本数据的识别精度。 展开更多
关键词 深度度量学习 三元组网络 注意力机制 开关状态识别
在线阅读 下载PDF
基于IMU传感器与深度度量学习的人体行为识别算法 被引量:1
6
作者 时尚 何正燃 董恒 《移动通信》 2024年第3期131-136,共6页
人体行为识别可以定义为通过一系列观察和周围环境来确定一个人的各种姿势和日常活动。很多研究尝试将深度学习技术用于HAR中,然而,现有的基于DL的HAR方法存在复杂度较高、算力需求大和泛化性与鲁棒性不足的问题。为了解决上述问题,围... 人体行为识别可以定义为通过一系列观察和周围环境来确定一个人的各种姿势和日常活动。很多研究尝试将深度学习技术用于HAR中,然而,现有的基于DL的HAR方法存在复杂度较高、算力需求大和泛化性与鲁棒性不足的问题。为了解决上述问题,围绕基于智能手机内置IMU传感器的HAR方法,提出了一种名为RMDML的HAR方法,该方法结合了轻量化神经网络Res-MLP和深度度量学习的特征嵌入技术,旨在提取具有可分离性与可判别性的泛化特征,从而提高模型识别性能和泛化性能。RMDML模型在公开数据集UCI HAR上取得了97.26%的准确率,高于几种常见的HAR算法,证明了所提出方法的有效性。 展开更多
关键词 人体行为识别 惯性测量单元传感器 残差多层感知机 度量学习
在线阅读 下载PDF
基于复数向量余弦相似度KNN和深度度量学习的高精度无源室内定位
7
作者 何之源 张志本 +2 位作者 沈琼霞 巩江超 王德胜 《移动通信》 2024年第8期77-84,共8页
AI及深度学习的发展为未来6G实现高精度室内定位系统提供了新思路。通过分析CSI数据的物理特性,提出了一种基于复数向量余弦相似度的改进KNN算法,显著提升了无源定位的性能。进一步地,采用度量学习方法,设计了Structured Embedding Los... AI及深度学习的发展为未来6G实现高精度室内定位系统提供了新思路。通过分析CSI数据的物理特性,提出了一种基于复数向量余弦相似度的改进KNN算法,显著提升了无源定位的性能。进一步地,采用度量学习方法,设计了Structured Embedding Loss损失函数,并引入Softmax Structure Loss优化神经网络模型,实现了端到端的高效训练和推理。实验结果表明,这些创新方法显著提高了无源定位的精度和鲁棒性,定位准确率和Macro-F1评分分别达到99.15%和99.1%,为无源定位、无线信号处理等领域提供了新的研究视角和技术路径。 展开更多
关键词 深度学习 度量学习 无源定位 信道状态信息 机器学习
在线阅读 下载PDF
基于深度度量学习的导弹气动系数预测
8
作者 刘林 杨春明 +1 位作者 蔺佳哲 向宏辉 《南京航空航天大学学报》 CAS CSCD 北大核心 2024年第5期950-959,共10页
传统多输出深度神经网络在导弹气动性能系数预测任务中,通常采用均方误差(Mean square error,MSE)和平均绝对误差(Mean absolute error,MAE)来训练网络,但在小样本及无物理方程约束的情况下,MSE与MAE对导弹性能系数之间的约束和不同导... 传统多输出深度神经网络在导弹气动性能系数预测任务中,通常采用均方误差(Mean square error,MSE)和平均绝对误差(Mean absolute error,MAE)来训练网络,但在小样本及无物理方程约束的情况下,MSE与MAE对导弹性能系数之间的约束和不同导弹样本之间的区分就会降低。针对该问题,提出一种基于深度度量学习的K最近邻大边距损失函数(K-nearest neighbor large margin,KNNLM),它通过边距约束将大差异输出样本推开,拉近相近输出样本,以此来解决样本及样本间的约束区分问题。以导弹气动外形及工况参数作为输入,4种气动系数作为输出,在反向传播神经网络(Backpropagation neural network,BPNN)和多任务学习神经网络(Multi-task learning neural network,MTLNN)中分别采用MSE、MAE、KNNLM进行实验对比,实验结果表明:KNNLM在BPNN和MTLNN中的精度相比于MSE和MAE最大能够提升14.44%和16.35%,最少提升3.72%。KNNLM能够在少样本及无物理知识约束的情况下,能更好地对导弹样本进行约束区分,使深度神经网络模型的预测精度更高,且鲁棒性更强。 展开更多
关键词 深度度量学习 导弹 气动性能预测 K最近邻大边距 多输出
在线阅读 下载PDF
基于拓扑结构的度量学习与拓扑传播的miRNA-疾病关联预测算法
9
作者 赵欢欢 李颜娥 +1 位作者 武斌 池方爱 《电子技术应用》 2024年第9期67-72,共6页
miRNA的突变和异常表达可能导致各种疾病,因此预测miRNA与疾病的潜在相关性对于临床医学和药物研究的发展具有重要意义。拓扑结构是miRNA-疾病预测算法的重要组成部分,然而当前算法并未有效利用拓扑结构导致预测结果并不理想。与此同时... miRNA的突变和异常表达可能导致各种疾病,因此预测miRNA与疾病的潜在相关性对于临床医学和药物研究的发展具有重要意义。拓扑结构是miRNA-疾病预测算法的重要组成部分,然而当前算法并未有效利用拓扑结构导致预测结果并不理想。与此同时,如何有效地融合多源数据也是当前的研究趋势。针对上述问题,提出一种自适应融合异质节点结构信息算法(MMTP),通过利用节点的一阶邻居和元路径诱导网络学习结构特征,并利用度量学习和拓扑传播自适应地融合异质节点结构信息,以提升miRNA-疾病预测精度。5折交叉验证实验结果表明,MMTP在HMDD v3.2数据集上的受试者操作曲线下面积(AUC)为94.81,高于其他模型。并且在基于肾癌的案例研究中,该模型所预测的前30个miRNAs全部得到证实。上述研究证明,所提的MMTP模型可有效预测miRNA-疾病相关性。 展开更多
关键词 深度学习 miRNA-疾病关联 度量学习 拓扑结构
在线阅读 下载PDF
基于元度量学习的小样本空战目标意图识别方法
10
作者 张灏龙 权晓伟 +1 位作者 刘瑞峰 黎开颜 《航天控制》 CSCD 2024年第4期64-70,共7页
针对战场复杂环境下通过较少空战对抗数据识别作战意图的问题,提出基于元度量学习框架的作战意图识别方法。该方法通过构建基于双向门控循环单元网络,实现对空战时序数据的有效特征提取,进而提出注意力机制,促使网络实现对小样本空战数... 针对战场复杂环境下通过较少空战对抗数据识别作战意图的问题,提出基于元度量学习框架的作战意图识别方法。该方法通过构建基于双向门控循环单元网络,实现对空战时序数据的有效特征提取,进而提出注意力机制,促使网络实现对小样本空战数据时序核心特征的充分提取,从而获取类间差异,达到较高的空战意图识别的准确率和速度。仿真实验表明,所提方法对于空战目标意图识别具有较好的准确率和实时性,在小样本数据的情况下能够实现较好的识别性能。 展开更多
关键词 空战目标 意图识别 注意力机制 双向门控循环单元网络 度量学习
在线阅读 下载PDF
基于深度度量学习的有源欺骗干扰快速识别算法
11
作者 温镇铭 王国宏 +1 位作者 于洪波 熊振宇 《中国电子科学研究院学报》 2024年第4期307-314,339,共9页
干扰的精准识别是实现干扰抑制的关键前提,但在实际有源欺骗干扰的识别过程中,形态相近的单一干扰易混淆、复合干扰识别准确率不高的问题较为突出。为解决这一问题,文中提出基于深度度量学习的有源欺骗干扰快速识别算法。方法以干扰信... 干扰的精准识别是实现干扰抑制的关键前提,但在实际有源欺骗干扰的识别过程中,形态相近的单一干扰易混淆、复合干扰识别准确率不高的问题较为突出。为解决这一问题,文中提出基于深度度量学习的有源欺骗干扰快速识别算法。方法以干扰信号的平滑伪Wigner-Ville分布(Smoothed Pseudo-Wigner-Ville Distribution,SPWVD)作为时频特征样本训练深度度量学习网络,并通过哈希算法和“交叉熵损失函数—三元组损失函数—中心损失函数”的联合约束优化图像特征,以增强深度度量学习网络对时频分布中细微差异的甄别能力。仿真实验表明,经训练后的深度度量学习网络可快速、准确识别八种单一干扰和三种复合干扰,平均识别准确率达到99.36%,且在样本数量较少的情况下依然保持良好性能。 展开更多
关键词 有源欺骗干扰 干扰识别 深度度量学习 损失函数 时频分布
在线阅读 下载PDF
基于深度度量学习的轴承故障诊断方法 被引量:9
12
作者 李小娟 徐增丙 +2 位作者 熊文 王志刚 谭俊杰 《振动与冲击》 EI CSCD 北大核心 2020年第15期25-31,共7页
针对机械大数据因故障类内离散度和类间相似度较大而导致诊断精度低的问题,提出一种深度度量学习故障诊断方法,采用深度神经网络(Deep Neural Network, DNN)对故障特征进行自适应提取,并利用基于欧氏距离的边际Fisher分析(Marginal Fish... 针对机械大数据因故障类内离散度和类间相似度较大而导致诊断精度低的问题,提出一种深度度量学习故障诊断方法,采用深度神经网络(Deep Neural Network, DNN)对故障特征进行自适应提取,并利用基于欧氏距离的边际Fisher分析(Marginal Fisher Analysis, MFA)方法进行了优选,在构建的深度度量网络(Deep Metric Network, DMN)顶层特征输出层添加BPNN(Back Propagation Neural Network, BPNN)分类器对网络参数进行微调,并实现故障的分类识别。通过对不同类型和严重程度的轴承故障进行了诊断分析,验证了该方法可以有效地对轴承故障进行高精度诊断,效果优于传统深度信念网络(Deep Belief Network, DBN)故障诊断方法以及常用时域统计特征结合支持向量机(Support Vector Machine, SVM)分类的故障诊断方法。 展开更多
关键词 深度度量学习 轴承 故障诊断 相似度
在线阅读 下载PDF
基于距离度量学习的DCT域JPEG图像检索 被引量:6
13
作者 吕清秀 李弼程 高毫林 《太赫兹科学与电子信息学报》 2014年第1期112-118,共7页
由于特征有限,传统基于欧式距离的压缩域检索性能并不理想。本文引入距离度量学习技术,研究压缩域图像检索,提出了一种基于距离度量学习的离散余弦变换(DCT)域联合图像专家小组(JPEG)图像检索方法。首先,提出了一种更有效的DCT域特征提... 由于特征有限,传统基于欧式距离的压缩域检索性能并不理想。本文引入距离度量学习技术,研究压缩域图像检索,提出了一种基于距离度量学习的离散余弦变换(DCT)域联合图像专家小组(JPEG)图像检索方法。首先,提出了一种更有效的DCT域特征提取方法;其次,运用距离度量学习技术训练出一个更加有效的度量矩阵进行检索。在Corel5000上的图像检索实验表明,新方法有效提高了检索准确度。 展开更多
关键词 距离度量学习 图像检索 离散余弦变换域 联合图像专家小组图像
在线阅读 下载PDF
基于耦合度量学习的特征级融合方法及在步态识别中的应用 被引量:2
14
作者 王科俊 阎涛 吕卓纹 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2013年第A01期7-11,共5页
根据耦合度量学习方法能够直接处理不同集合的数据这一特性,将其应用到数据融合领域,提出了一种基于耦合度量学习的特征级融合方法.该方法首先通过增加对原始单个集合中具有相关关系的数据的优化处理,将耦合度量学习方法的目标函数改进... 根据耦合度量学习方法能够直接处理不同集合的数据这一特性,将其应用到数据融合领域,提出了一种基于耦合度量学习的特征级融合方法.该方法首先通过增加对原始单个集合中具有相关关系的数据的优化处理,将耦合度量学习方法的目标函数改进成在耦合空间中所有具有相关关系的投影特征均彼此接近,从而使得这些特征的整体分布更满足特征级融合的需求,而后采用串行方式对特征进行融合,最终得到更加有效的特征用来分类识别.将上述方法应用到步态识别中,以解决步态识别中的数据融合问题.采用CASIA(B)步态数据库进行实验分析,结果表明该方法识别效果较好. 展开更多
关键词 耦合度量学习 特征级融合 步态识别 步态能量图
在线阅读 下载PDF
基于距离度量学习的煤岩识别方法 被引量:2
15
作者 伍云霞 申少飞 《工矿自动化》 北大核心 2017年第5期22-26,共5页
提出了一种基于距离度量学习的煤岩识别方法。该方法首先从煤岩图像训练集中提取煤岩图像特征;然后学习到特定的距离度量,使得煤样本特征间、岩石样本特征间距离变小,煤样本特征与岩石样本特征间距离变大,以提高分类识别效果;最后采用... 提出了一种基于距离度量学习的煤岩识别方法。该方法首先从煤岩图像训练集中提取煤岩图像特征;然后学习到特定的距离度量,使得煤样本特征间、岩石样本特征间距离变小,煤样本特征与岩石样本特征间距离变大,以提高分类识别效果;最后采用分类器进行煤岩识别。实验结果表明,对于煤岩样本图像的LBP特征、HOG特征、GLCM特征,与基于欧式距离、LDA、ITML的煤岩识别方法相比,该方法具有更高的煤岩识别率。 展开更多
关键词 煤岩识别 分类识别 煤岩特征提取 距离度量学习
在线阅读 下载PDF
双域滤波三元组度量学习的行人再识别 被引量:1
16
作者 肖进胜 郭浩文 +3 位作者 张舒豪 邹文涛 王元方 谢红刚 《电子与信息学报》 EI CSCD 北大核心 2022年第11期3931-3940,共10页
在图像的捕获、传输或者处理过程中都有可能产生噪声,当图像被大量噪声影响时,许多行人再识别(ReID)方法将很难提取具有足够表达能力的行人特征,表现出较差的鲁棒性。该文主要针对低质图像的行人再识别问题,提出双域滤波分解构建3元组,... 在图像的捕获、传输或者处理过程中都有可能产生噪声,当图像被大量噪声影响时,许多行人再识别(ReID)方法将很难提取具有足够表达能力的行人特征,表现出较差的鲁棒性。该文主要针对低质图像的行人再识别问题,提出双域滤波分解构建3元组,用于训练度量学习模型。所提方法主要分为两个部分,首先分析了监控视频中不同图像噪声的分布特性,通过双域滤波进行图像增强。然后基于双域滤波分解对图像噪声具有很好的分离作用,该文提出一种新的3元组构建方式。在训练阶段,将双域滤波生成的低频原始图像和高频噪声图像,与原图一起作为输入3元组,网络可以进一步抑制噪声分量。同时优化了损失函数,将3元组损失和对比损失组合使用。最后利用re-ranking扩充排序表,提高识别的准确率。在加噪Market-1501和CUHK03数据集上的平均Rank-1为78.3%和21.7%,平均准确率均值(mAP)为66.9%和20.5%。加噪前后的Rank-1精度损失只有1.9%和7.8%,表明该文模型在含噪情况表现出较强的鲁棒性。 展开更多
关键词 行人再识别 双域滤波 度量学习 3元组损失
在线阅读 下载PDF
基于监督的距离度量学习方法研究 被引量:3
17
作者 战扬 金英 杨丰 《信息技术》 2011年第12期21-23,共3页
很多机器学习算法(比如K近邻算法),学习的效果非常依赖于输入数据的距离度量,距离度量学习的主要目标是通过训练样本学习出一个能够更有效反映样本空间的距离函数,在此距离函数下,同类样本具有较近的距离,异类样本具有较远的距离。对近... 很多机器学习算法(比如K近邻算法),学习的效果非常依赖于输入数据的距离度量,距离度量学习的主要目标是通过训练样本学习出一个能够更有效反映样本空间的距离函数,在此距离函数下,同类样本具有较近的距离,异类样本具有较远的距离。对近年来基于监督的距离度量学习方法的基本思想和算法进行了研究,并对当前距离度量学习的热点进行了介绍。 展开更多
关键词 距离度量学习 机器学习 K近邻分类器
在线阅读 下载PDF
基于度量学习的邻域k凸包集成方法 被引量:2
18
作者 牟廉明 《合肥工业大学学报(自然科学版)》 CAS CSCD 北大核心 2013年第2期171-175,共5页
k局部凸包分类方法通过改进k近邻算法在处理小样本问题时的决策边界而显著提高分类性能,k子凸包分类方法通过克服k凸包分类对类数和样本环状分布的敏感性而改善了分类性能。但是,该方法仍然对样本距离度量方法敏感,并且在k邻域内不同类... k局部凸包分类方法通过改进k近邻算法在处理小样本问题时的决策边界而显著提高分类性能,k子凸包分类方法通过克服k凸包分类对类数和样本环状分布的敏感性而改善了分类性能。但是,该方法仍然对样本距离度量方法敏感,并且在k邻域内不同类的样本数经常严重失衡,导致分类性能下降。针对上述问题,文章提出了一种邻域k凸包分类方法,并通过引入距离度量学习和集成学习技术来提高算法对样本空间度量的鲁棒性。大量实验表明,文中提出的基于度量学习的邻域k凸包集成方法具有显著的分类性能优势。 展开更多
关键词 邻域k凸包 度量学习 K近邻 集成学习
在线阅读 下载PDF
基于SVM的BoVW距离度量学习 被引量:1
19
作者 吕清秀 郭志刚 赵永威 《信息工程大学学报》 2013年第5期585-590,633,共7页
在视觉单词包模型(bag of visual words,BoVW)模型中,由于特征检测的不足、聚类算法的缺陷及视觉单词的量化误差,用BoVW模型产生的视觉词典中,存在视觉单词同义性和歧义性的问题,因此用BoVW计算图像距离时,效果不太理想。BoVW模型产生... 在视觉单词包模型(bag of visual words,BoVW)模型中,由于特征检测的不足、聚类算法的缺陷及视觉单词的量化误差,用BoVW模型产生的视觉词典中,存在视觉单词同义性和歧义性的问题,因此用BoVW计算图像距离时,效果不太理想。BoVW模型产生的词典规模巨大,学习一个普通矩阵需要的运算量难以接受。针对BoVW模型上述缺陷,文章提出了一种基于SVM的BoVW距离度量学习方法。该方法利用SVM训练一个将相似图像对与非相似图像对最大程度分离的超平面,得到计算词频直方图点积的权重矩阵。在Oxford图像集上的检索实验表明了该方法的有效性。 展开更多
关键词 距离度量学习 图像检索 支持向量机 视觉单词
在线阅读 下载PDF
基于鲁棒回归度量学习的图像分类算法 被引量:1
20
作者 常冬霞 王舒伟 《北京交通大学学报》 CAS CSCD 北大核心 2021年第2期119-126,共8页
度量学习是机器学习中的重要研究问题之一,针对实际应用中的噪声数据,如何建立一个鲁棒的度量仍是一个挑战.本文将稀疏表示、特征学习与分类模型相结合提出了一种新的基于鲁棒回归度量学习(RRML)的算法并将其应用于图像分类.算法对最优... 度量学习是机器学习中的重要研究问题之一,针对实际应用中的噪声数据,如何建立一个鲁棒的度量仍是一个挑战.本文将稀疏表示、特征学习与分类模型相结合提出了一种新的基于鲁棒回归度量学习(RRML)的算法并将其应用于图像分类.算法对最优特征子空间和稀疏表示进行联合学习,在更具判别性的低维表征空间中,通过稀疏表示有效地编码数据的局部结构信息,进而更好地揭示数据的内在鉴别信息,并以此指导该模型学习到最优的投影矩阵;同时对噪声矩阵和投影矩阵的行稀疏约束,可以极大降低噪声的影响.实验结果表明所提算法在图像分类准确率和鲁棒性方面均优于其他对比算法. 展开更多
关键词 图像分类 度量学习 鲁棒回归 稀疏表示 特征子空间
在线阅读 下载PDF
上一页 1 2 5 下一页 到第
使用帮助 返回顶部