期刊文献+

Temporal Dynamics of Land Use and Water Quality in Three Sub-Catchments of the Rur River, Germany

Temporal Dynamics of Land Use and Water Quality in Three Sub-Catchments of the Rur River, Germany
在线阅读 下载PDF
导出
摘要 The Rur catchment has over time undergone land use change which could have affected the biogeochemical processes of the river. Three sub-catchment</span></span><span><span><span style="font-family:""><span style="font-family:Verdana;">s in the Rur, Upper Rur, Inde and Wurm have different kinds of land use. Upper Rur is more natural catchment;Inde is mixed type and Wurm is highly modified </span><span style="font-family:Verdana;">by anthropogenic activities. This study investigated how land use changes</span><span style="font-family:Verdana;"> from </span><span><span style="font-family:Verdana;">2000 to 2018 have influenced SO</span><sub><span style="font-family:Verdana;">4</span></sub><span style="font-family:Verdana;"> and Cl dynamics in the Rur catchment.</span></span><span style="font-family:Verdana;"> Land use maps were developed in QGIS environment for land use change calculation. Historical water quality data were collected from the online public source by Ministry of Environment and Nature Conservation in Germany. R-software was used for statistical analysis and graphical presentation. Less land use change was observed in the Upper Rur between 2000 to 2018. But in the Inde and Wurm decrease in agricultural land and associated increase in </span><span style="font-family:Verdana;">industrial, commercial and urban land were observed. Increase in mining</span><span style="font-family:Verdana;"> area inside the catchment has enhanced the level of SO</span><sub><span style="font-family:Verdana;">4</span></sub><span style="font-family:Verdana;"> and EC in the Inde river. Conversion rates of natural to human dominated land use could be quantified </span><span style="font-family:Verdana;">in this study through land use change mapping, which will further help in</span> <span style="font-family:Verdana;">making water management plan for these and comparable German and</span><span style="font-family:Verdana;"> European catchments. However, high quality historical data set is a key requirement to maximize the output in process of relating impact of land use change in water quality. The Rur catchment has over time undergone land use change which could have affected the biogeochemical processes of the river. Three sub-catchment</span></span><span><span><span style="font-family:""><span style="font-family:Verdana;">s in the Rur, Upper Rur, Inde and Wurm have different kinds of land use. Upper Rur is more natural catchment;Inde is mixed type and Wurm is highly modified </span><span style="font-family:Verdana;">by anthropogenic activities. This study investigated how land use changes</span><span style="font-family:Verdana;"> from </span><span><span style="font-family:Verdana;">2000 to 2018 have influenced SO</span><sub><span style="font-family:Verdana;">4</span></sub><span style="font-family:Verdana;"> and Cl dynamics in the Rur catchment.</span></span><span style="font-family:Verdana;"> Land use maps were developed in QGIS environment for land use change calculation. Historical water quality data were collected from the online public source by Ministry of Environment and Nature Conservation in Germany. R-software was used for statistical analysis and graphical presentation. Less land use change was observed in the Upper Rur between 2000 to 2018. But in the Inde and Wurm decrease in agricultural land and associated increase in </span><span style="font-family:Verdana;">industrial, commercial and urban land were observed. Increase in mining</span><span style="font-family:Verdana;"> area inside the catchment has enhanced the level of SO</span><sub><span style="font-family:Verdana;">4</span></sub><span style="font-family:Verdana;"> and EC in the Inde river. Conversion rates of natural to human dominated land use could be quantified </span><span style="font-family:Verdana;">in this study through land use change mapping, which will further help in</span> <span style="font-family:Verdana;">making water management plan for these and comparable German and</span><span style="font-family:Verdana;"> European catchments. However, high quality historical data set is a key requirement to maximize the output in process of relating impact of land use change in water quality.
作者 Sristika Adhikari Sristika Adhikari(IHE-Institute of Water Education, Delft, The Netherlands)
出处 《Journal of Geoscience and Environment Protection》 2020年第8期36-47,共12页 地球科学和环境保护期刊(英文)
关键词 Agriculture CATCHMENT Land Use Change SEASON Urban Water Quality Agriculture Catchment Land Use Change Season Urban Water Quality
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部