期刊文献+

Temporal and Spatial Characteristics of Summer Extreme Precipitation in Eastern China and Possible Causalities 被引量:1

Temporal and Spatial Characteristics of Summer Extreme Precipitation in Eastern China and Possible Causalities
在线阅读 下载PDF
导出
摘要 In the past decades, with the increasing frequency of extreme weather and climate events, the world has suffered huge losses. Based on NCEP/NCAR reanalysis data and China regional precipitation data provided by China Meteorological Administration, the extreme precipitation events in eastern China are defined by relative threshold method, and the temporal and spatial characteristics of summer extreme precipitation in eastern China from 1961 to 2016 are analyzed by empirical orthogonal function (EOF), and the reverse distribution of extreme precipitation in the middle and lower reaches of the Yangtze River and south China by Indian Ocean warm pool is revealed influence. The results show that the total amount and frequency of extreme precipitation in summer are concentrated in the Yangtze River Basin and south China. EOF1 decomposition of extreme precipitation reflects the interannual oscillation characteristics of reverse spatial distribution in the Yangtze River Basin and south China. The time series corresponding to EOF1 has significant interannual characteristics. The Pacific-Japan (PJ) teleconnection pattern is a circulation system that significantly affects the spatial-temporal pattern of extreme precipitation in southern China. When the PJ pattern is in the positive phase, the anticyclone controls the south China region, and restrains the convective activity, which results in the decrease of extreme precipitation. The anomalous southwest wind to the south of 30<span style="font-size:10.0pt;font-family:;" "=""><span style="font-family:Verdana, Helvetica, Arial;white-space:normal;background-color:#FFFFFF;">&#176</span></span>N and the anomalous northerly wind to the north of 30<span style="font-size:10.0pt;font-family:;" "=""><span style="font-family:Verdana, Helvetica, Arial;white-space:normal;background-color:#FFFFFF;">&#176</span></span>N converge in the middle and lower reaches of the Yangtze River. Combining with the sufficient water vapor carried by the anomalous southwest airflow at the edge of anticyclone, it is more conducive to the formation of extreme precipitation. The east propagating Kelvin wave in the warm pool of the Indian Ocean is an important reason for the formation of the PJ pattern and finally the formation of extreme precipitation anomalies in China. In the past decades, with the increasing frequency of extreme weather and climate events, the world has suffered huge losses. Based on NCEP/NCAR reanalysis data and China regional precipitation data provided by China Meteorological Administration, the extreme precipitation events in eastern China are defined by relative threshold method, and the temporal and spatial characteristics of summer extreme precipitation in eastern China from 1961 to 2016 are analyzed by empirical orthogonal function (EOF), and the reverse distribution of extreme precipitation in the middle and lower reaches of the Yangtze River and south China by Indian Ocean warm pool is revealed influence. The results show that the total amount and frequency of extreme precipitation in summer are concentrated in the Yangtze River Basin and south China. EOF1 decomposition of extreme precipitation reflects the interannual oscillation characteristics of reverse spatial distribution in the Yangtze River Basin and south China. The time series corresponding to EOF1 has significant interannual characteristics. The Pacific-Japan (PJ) teleconnection pattern is a circulation system that significantly affects the spatial-temporal pattern of extreme precipitation in southern China. When the PJ pattern is in the positive phase, the anticyclone controls the south China region, and restrains the convective activity, which results in the decrease of extreme precipitation. The anomalous southwest wind to the south of 30<span style="font-size:10.0pt;font-family:;" "=""><span style="font-family:Verdana, Helvetica, Arial;white-space:normal;background-color:#FFFFFF;">&#176</span></span>N and the anomalous northerly wind to the north of 30<span style="font-size:10.0pt;font-family:;" "=""><span style="font-family:Verdana, Helvetica, Arial;white-space:normal;background-color:#FFFFFF;">&#176</span></span>N converge in the middle and lower reaches of the Yangtze River. Combining with the sufficient water vapor carried by the anomalous southwest airflow at the edge of anticyclone, it is more conducive to the formation of extreme precipitation. The east propagating Kelvin wave in the warm pool of the Indian Ocean is an important reason for the formation of the PJ pattern and finally the formation of extreme precipitation anomalies in China.
作者 Yahan Zhong Mengzhou Yang Chaoxia Yuan Yahan Zhong;Mengzhou Yang;Chaoxia Yuan(Key Laboratory of Meteorological Disaster of Ministry of Education, Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science & Technology, Nanjing, China)
出处 《Journal of Geoscience and Environment Protection》 2020年第6期36-46,共11页 地球科学和环境保护期刊(英文)
关键词 Extreme Precipitation Pacific-Japan Pattern Indian Ocean Warm Pool Extreme Precipitation Pacific-Japan Pattern Indian Ocean Warm Pool
  • 相关文献

同被引文献20

引证文献1

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部