期刊文献+

Fabrication of Curcumin Encapsulated Chitosan-PVA Silver Nanocomposite Films for Improved Antimicrobial Activity 被引量:14

Fabrication of Curcumin Encapsulated Chitosan-PVA Silver Nanocomposite Films for Improved Antimicrobial Activity
在线阅读 下载PDF
导出
摘要 The present study explores the in situ fabrication of chitosan-poly(vinyl alcohol)-silver nanocomposite films in view of their increasing applications as antimicrobial packaging, wound dressing and antibacterial materials. The reduction of silver ions into silver nanoparticles (AgNPs) is achieved in acidic solution of chitosan (C) and poly (vinyl alcohol) (PVA) using their functional groups (-OH, -COOH, -NH2 groups). The presence of silver nanoparticles in the chito-san-PVA film is confirmed by UV-Vis spectroscopy, Fourier Transform Infrared (FTIR) spectroscopy and X-ray Dif-fraction (XRD) analysis. The Scanning Electron Microscopic (SEM) images illustrate the presence of embedded silver nanoparticles throughout the films. In addition, the formed silver nanoparticles have an average particle size of ~ 16.5 nm as observed by Transmission Electron Microscopy (TEM). The anti-microbial and anti-fungal activity of the chitosan-PVA silver nanoparticle films have demonstrated significant effects against Escherichia coli (E. coli), Pseudomonas, Staphylococcus, Micrococcus, Candida albicans, and Pseudomonas aeruginosa (P. aeruginosa). To improve further their therapeutic efficacy as anti-microbial agents, curcumin encapsulated chitosan-PVA silver nanocomposite films are developed which showed enormous growth inhibition of E. coli compared to curcumin and chitosan-PVA silver nanoparticles film alone. Therefore, the present study clearly provides novel antimicrobial films which are potentially useful in preventing/treating infections. The present study explores the in situ fabrication of chitosan-poly(vinyl alcohol)-silver nanocomposite films in view of their increasing applications as antimicrobial packaging, wound dressing and antibacterial materials. The reduction of silver ions into silver nanoparticles (AgNPs) is achieved in acidic solution of chitosan (C) and poly (vinyl alcohol) (PVA) using their functional groups (-OH, -COOH, -NH2 groups). The presence of silver nanoparticles in the chito-san-PVA film is confirmed by UV-Vis spectroscopy, Fourier Transform Infrared (FTIR) spectroscopy and X-ray Dif-fraction (XRD) analysis. The Scanning Electron Microscopic (SEM) images illustrate the presence of embedded silver nanoparticles throughout the films. In addition, the formed silver nanoparticles have an average particle size of ~ 16.5 nm as observed by Transmission Electron Microscopy (TEM). The anti-microbial and anti-fungal activity of the chitosan-PVA silver nanoparticle films have demonstrated significant effects against Escherichia coli (E. coli), Pseudomonas, Staphylococcus, Micrococcus, Candida albicans, and Pseudomonas aeruginosa (P. aeruginosa). To improve further their therapeutic efficacy as anti-microbial agents, curcumin encapsulated chitosan-PVA silver nanocomposite films are developed which showed enormous growth inhibition of E. coli compared to curcumin and chitosan-PVA silver nanoparticles film alone. Therefore, the present study clearly provides novel antimicrobial films which are potentially useful in preventing/treating infections.
机构地区 不详
出处 《Journal of Biomaterials and Nanobiotechnology》 2011年第1期55-64,共10页 生物材料与纳米技术(英文)
关键词 SILVER Nanoparticles Chitosan Poly(Vinyl Alcohol) CURCUMIN WOUND DRESSING Hydrogel Silver Nanoparticles Chitosan Poly(Vinyl Alcohol) Curcumin Wound Dressing Hydrogel
  • 相关文献

同被引文献58

引证文献14

二级引证文献82

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部