期刊文献+

Molybdenum Phosphide Flakes Catalyze Hydrogen Generation in Acidic and Basic Solutions 被引量:1

Molybdenum Phosphide Flakes Catalyze Hydrogen Generation in Acidic and Basic Solutions
在线阅读 下载PDF
导出
摘要 Molybdenum phosphide (MoP) flakes were synthesized by the reduction of hexaammonium heptamolybdate tetrahydrate and ammonium dihydrogen phosphate. The flakes are porous and constructed by MoP nanoparticles with ca. 100 nm diameters. The lateral size of flakes ranges from less than 1 μm to larger than 5 μm, and the thickness of MoP fakes is ca. 200 nm. The mixture of MoP flakes and carbon black exhibits effective catalytic activity in the hydrogen evolution reaction. The optimal overpotential required for 20 mA·cm﹣2 current density is 155 mV in acidic solution and 184 mV in basic solution. The mixture can work stably in long-term hydrogen generation in both acidic and basic solution. The faradaic yield of mixture in hydrogen evolution reaction is nearly 100% in both acidic and basic solution. The Mo and P species in MoP flakes are found to have small positive and negative charge, respectively. The catalytic activity of MoP flakes is likely to be correlated with this charged nature. Molybdenum phosphide (MoP) flakes were synthesized by the reduction of hexaammonium heptamolybdate tetrahydrate and ammonium dihydrogen phosphate. The flakes are porous and constructed by MoP nanoparticles with ca. 100 nm diameters. The lateral size of flakes ranges from less than 1 μm to larger than 5 μm, and the thickness of MoP fakes is ca. 200 nm. The mixture of MoP flakes and carbon black exhibits effective catalytic activity in the hydrogen evolution reaction. The optimal overpotential required for 20 mA·cm﹣2 current density is 155 mV in acidic solution and 184 mV in basic solution. The mixture can work stably in long-term hydrogen generation in both acidic and basic solution. The faradaic yield of mixture in hydrogen evolution reaction is nearly 100% in both acidic and basic solution. The Mo and P species in MoP flakes are found to have small positive and negative charge, respectively. The catalytic activity of MoP flakes is likely to be correlated with this charged nature.
出处 《American Journal of Analytical Chemistry》 2014年第17期1200-1213,共14页 美国分析化学(英文)
关键词 MOLYBDENUM PHOSPHIDE Hydrogen Evolution Reaction Catalyst ELECTROLYSIS Molybdenum Phosphide Hydrogen Evolution Reaction Catalyst Electrolysis
  • 相关文献

同被引文献6

引证文献1

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部