期刊文献+

Tomato Plants Overexpressing a Celery Mannitol Dehydrogenase (MTD) Have Decreased Susceptibility to <i>Botrytis cinerea</i> 被引量:2

Tomato Plants Overexpressing a Celery Mannitol Dehydrogenase (MTD) Have Decreased Susceptibility to <i>Botrytis cinerea</i>
在线阅读 下载PDF
导出
摘要 The oxidative burst is a critical early event in plant-pathogen interactions that leads to a localized, programmed cell death (PCD) called the hypersensitive response (HR). The HR and associated PCD retard infection by biotrophic pathogens, but can, in fact, enhance infection by necrotrophic pathogens like Botrytis cinerea. In addition to signaling the induction of the HR, reactive oxygen species (ROS) produced during the oxidative burst are?antimicrobial. We hypothesize that pathogens such as B. cinerea survive the antimicrobial effects of ROS, at least partially by secreting the antioxidant mannitol during infection. This is supported by the previous observation that overexpression of the catabolic enzyme mannitol dehydrogenase (MTD) can decrease a plants susceptibility to mannitol-secreting pathogens like B. cinerea. To extend the above hypothesis, and test the general utility of this approach in an important horticultural crop, we overexpressed celery MTD in tomato (Solanum lycopersicum cv. “Moneymaker”). In these studies, we observed a significant increase (up to 90%) in resistance to B. cinerea in transgenic tomatoes expressing high amounts of MTD. The oxidative burst is a critical early event in plant-pathogen interactions that leads to a localized, programmed cell death (PCD) called the hypersensitive response (HR). The HR and associated PCD retard infection by biotrophic pathogens, but can, in fact, enhance infection by necrotrophic pathogens like Botrytis cinerea. In addition to signaling the induction of the HR, reactive oxygen species (ROS) produced during the oxidative burst are?antimicrobial. We hypothesize that pathogens such as B. cinerea survive the antimicrobial effects of ROS, at least partially by secreting the antioxidant mannitol during infection. This is supported by the previous observation that overexpression of the catabolic enzyme mannitol dehydrogenase (MTD) can decrease a plants susceptibility to mannitol-secreting pathogens like B. cinerea. To extend the above hypothesis, and test the general utility of this approach in an important horticultural crop, we overexpressed celery MTD in tomato (Solanum lycopersicum cv. “Moneymaker”). In these studies, we observed a significant increase (up to 90%) in resistance to B. cinerea in transgenic tomatoes expressing high amounts of MTD.
出处 《American Journal of Plant Sciences》 2015年第8期1116-1125,共10页 美国植物学期刊(英文)
关键词 HYPERSENSITIVE RESPONSE Pathogenesis RESPONSE PLANT-PATHOGEN Interaction Programmed Cell Death Reactive Oxygen Species Hypersensitive Response Pathogenesis Response Plant-Pathogen Interaction Programmed Cell Death Reactive Oxygen Species
  • 相关文献

同被引文献8

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部