期刊文献+

Numerical Study of RBC Motion and Deformation through Microcapillary in Alcohol Plasma Solution

Numerical Study of RBC Motion and Deformation through Microcapillary in Alcohol Plasma Solution
在线阅读 下载PDF
导出
摘要 Alcohol influences human health condition by starving red blood cells (RBCs) of oxygen, which results in poor blood circulation. Starved RBCs clump together and restrict blood flow, especially in capillaries. In this study, a finite element method-based moving mesh technique was applied to simulate the motion and deformation of a single RBC under different flow conditions. A 2-D model of a single RBC floating in plasma-alcohol solution was created using Arbitrary Lagrangian-Eulerian (ALE) method with moving mesh for a fluid structure interaction problem. Cell deformability and stability were studied in an alcoholic plasma solution at different fluid flow conditions. Poor blood circulation was observed with RBC tending to rotate and oscillate at low flow rates. Moreover, RBC exhibited a parachute shape while moving without oscillation, which indicated improved micro-circulation at increased flow rates. In both cases, RBC exhibited a parachute shape while moving through micro-channel at increased flow rates. The simulation also showed the significant increase of RBC deformability with the increasing viscosity of plasma as a result of alcohol presence in blood. Alcohol influences human health condition by starving red blood cells (RBCs) of oxygen, which results in poor blood circulation. Starved RBCs clump together and restrict blood flow, especially in capillaries. In this study, a finite element method-based moving mesh technique was applied to simulate the motion and deformation of a single RBC under different flow conditions. A 2-D model of a single RBC floating in plasma-alcohol solution was created using Arbitrary Lagrangian-Eulerian (ALE) method with moving mesh for a fluid structure interaction problem. Cell deformability and stability were studied in an alcoholic plasma solution at different fluid flow conditions. Poor blood circulation was observed with RBC tending to rotate and oscillate at low flow rates. Moreover, RBC exhibited a parachute shape while moving without oscillation, which indicated improved micro-circulation at increased flow rates. In both cases, RBC exhibited a parachute shape while moving through micro-channel at increased flow rates. The simulation also showed the significant increase of RBC deformability with the increasing viscosity of plasma as a result of alcohol presence in blood.
出处 《Open Journal of Fluid Dynamics》 2015年第1期26-33,共8页 流体动力学(英文)
关键词 Moving Mesh Fluid Structure Interaction ALCOHOL RBC Microvessel DEFORMABILITY Micro-Circulation Moving Mesh Fluid Structure Interaction Alcohol RBC Microvessel Deformability Micro-Circulation
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部